Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic variation cuts bladder cancer risk, protects chromosome tips

04.04.2011
UT MD Anderson scientists also link the same SNP to longer telomeres

A common genetic variation links to both bladder cancer risk and to the length of protective caps found on the ends of chromosomes, scientists at The University of Texas MD Anderson Cancer Center reported today at the AACR 102nd Annual Meeting.

These endings or tips, called telomeres, guard against chromosomal damage and genomic instability that can lead to cancer and other diseases.

"We found a single point of variation in the genome strongly associated with a 19 percent decrease in bladder cancer risk. The same variant also is linked to longer telomeres, which accounts for part of the overall reduction in risk," said first author Jian Gu, Ph.D., assistant professor in MD Anderson's Department of Epidemiology.

Telomere length diminishes with age, Gu said, and short telomeres are associated with age-related diseases such as stroke, Alzheimer's disease, diabetes, cardiovascular disease and cancer.

Previous studies separately tied telomere length either to cancer risk or to genetic variation. The paper by Gu and colleagues is the first to make both connections.

"Understanding the complex genetic regulation of telomere length and its relation to the causes of bladder and other types of cancer will help develop therapies or lifestyle changes to reduce cancer risk," said senior author Xifeng Wu, M.D., Ph.D., professor and chair of MD Anderson's Department of Epidemiology.

Wu and colleagues in 2003 were the first to show that short telomeres increase the risk of bladder, lung, kidney and head and neck cancers in a human epidemiological study.

Start with 300,000 SNPs

The new findings were presented by Gu at the AACR annual meeting and simultaneously published in Cancer Prevention Research, an AACR journal.

AACR President Elizabeth Blackburn, Ph.D., the Morris Herzstein professor of biology and physiology at the University of California San Francisco, won the Nobel Prize for Medicine or Physiology in 2009 for her role in the discovery of telomeres and the enzyme telomerase. She wrote an editorial in Cancer Prevention Research and appeared with Gu at a news conference Saturday to discuss the importance of the study results.

Researchers first conducted a genome-wide association study to identify genetic variations associated with telomere length. They analyzed more than 300,000 single nucleotide polymorphisms (SNPs), common points of variation in the genome, in 459 healthy controls.

This narrowed the field to 15,120 SNPs, which were then validated in 1,160 healthy controls in two independent populations. They selected the top four SNPs that were associated with telomere length across all three populations for the bladder cancer association study.

Then there was one

The team evaluated the association of these four sites with the risk of bladder cancer in a case-control study of 969 patients and 946 controls. Only one, a SNP on chromosome 14 known as rs398652, was associated with bladder cancer risk.

Since the SNP was associated with both telomere length and bladder cancer risk, the team conducted a mediation analysis to determine whether the effect on telomere length caused some of the risk reduction. Telomere length accounted for 14 percent of the SNP's effect on bladder cancer.

"We think the remaining portion of the SNP effect on bladder cancer may be caused by inflammation or immune response," Gu said. "But understanding the remainder of the risk will require more basic research." Rs398652 is nearest to a gene on chromosome 14 called PELI2, which is involved in the inflammatory and immune response.

Follow up studies will focus on whether this SNP is associated with other types of cancer, particularly those affected by telomere length such as lung, kidney and esophageal cancer, Gu said, as well as the biological mechanisms by which the SNP affects telomere length.

Grants from the National Cancer Institute funded this research.

Co-authors with Gu and Wu are co-lead author Meng Chen, Ph.D., Sanjay Shete, Ph.D., Christopher Amos, Ph.D., Yuanqing Ye, Ph.D., and Jie Lin, Ph.D., all of the Department of Epidemiology, and Ashish Kamat, M.D., and Colin Dinney, M.D., of MD Anderson's Department of Urology.

About MD Anderson
The University of Texas MD Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. MD Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For seven of the past nine years, including 2010, MD Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>