Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic variation cuts bladder cancer risk, protects chromosome tips

04.04.2011
UT MD Anderson scientists also link the same SNP to longer telomeres

A common genetic variation links to both bladder cancer risk and to the length of protective caps found on the ends of chromosomes, scientists at The University of Texas MD Anderson Cancer Center reported today at the AACR 102nd Annual Meeting.

These endings or tips, called telomeres, guard against chromosomal damage and genomic instability that can lead to cancer and other diseases.

"We found a single point of variation in the genome strongly associated with a 19 percent decrease in bladder cancer risk. The same variant also is linked to longer telomeres, which accounts for part of the overall reduction in risk," said first author Jian Gu, Ph.D., assistant professor in MD Anderson's Department of Epidemiology.

Telomere length diminishes with age, Gu said, and short telomeres are associated with age-related diseases such as stroke, Alzheimer's disease, diabetes, cardiovascular disease and cancer.

Previous studies separately tied telomere length either to cancer risk or to genetic variation. The paper by Gu and colleagues is the first to make both connections.

"Understanding the complex genetic regulation of telomere length and its relation to the causes of bladder and other types of cancer will help develop therapies or lifestyle changes to reduce cancer risk," said senior author Xifeng Wu, M.D., Ph.D., professor and chair of MD Anderson's Department of Epidemiology.

Wu and colleagues in 2003 were the first to show that short telomeres increase the risk of bladder, lung, kidney and head and neck cancers in a human epidemiological study.

Start with 300,000 SNPs

The new findings were presented by Gu at the AACR annual meeting and simultaneously published in Cancer Prevention Research, an AACR journal.

AACR President Elizabeth Blackburn, Ph.D., the Morris Herzstein professor of biology and physiology at the University of California San Francisco, won the Nobel Prize for Medicine or Physiology in 2009 for her role in the discovery of telomeres and the enzyme telomerase. She wrote an editorial in Cancer Prevention Research and appeared with Gu at a news conference Saturday to discuss the importance of the study results.

Researchers first conducted a genome-wide association study to identify genetic variations associated with telomere length. They analyzed more than 300,000 single nucleotide polymorphisms (SNPs), common points of variation in the genome, in 459 healthy controls.

This narrowed the field to 15,120 SNPs, which were then validated in 1,160 healthy controls in two independent populations. They selected the top four SNPs that were associated with telomere length across all three populations for the bladder cancer association study.

Then there was one

The team evaluated the association of these four sites with the risk of bladder cancer in a case-control study of 969 patients and 946 controls. Only one, a SNP on chromosome 14 known as rs398652, was associated with bladder cancer risk.

Since the SNP was associated with both telomere length and bladder cancer risk, the team conducted a mediation analysis to determine whether the effect on telomere length caused some of the risk reduction. Telomere length accounted for 14 percent of the SNP's effect on bladder cancer.

"We think the remaining portion of the SNP effect on bladder cancer may be caused by inflammation or immune response," Gu said. "But understanding the remainder of the risk will require more basic research." Rs398652 is nearest to a gene on chromosome 14 called PELI2, which is involved in the inflammatory and immune response.

Follow up studies will focus on whether this SNP is associated with other types of cancer, particularly those affected by telomere length such as lung, kidney and esophageal cancer, Gu said, as well as the biological mechanisms by which the SNP affects telomere length.

Grants from the National Cancer Institute funded this research.

Co-authors with Gu and Wu are co-lead author Meng Chen, Ph.D., Sanjay Shete, Ph.D., Christopher Amos, Ph.D., Yuanqing Ye, Ph.D., and Jie Lin, Ph.D., all of the Department of Epidemiology, and Ashish Kamat, M.D., and Colin Dinney, M.D., of MD Anderson's Department of Urology.

About MD Anderson
The University of Texas MD Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. MD Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For seven of the past nine years, including 2010, MD Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>