Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic variation contributes to pulmonary fibrosis risk

16.04.2013
A newly published study of patients with pulmonary fibrosis has discovered multiple genetic variations that should help with future efforts to treat the disease.
Pulmonary fibrosis is a condition where lung tissue becomes thickened, stiff and scarred. Currently in the United States, there are no drugs approved for use in cases of the condition's most common and severe form, which is known as idiopathic pulmonary fibrosis (IPF) because the cause of the disease is not known. In those cases, the median survival time after diagnosis is two to three years and lung transplants are the only intervention known to prolong life.

This new study found evidence that common genetic variation is an important contributor to the risk of developing IPF, accounting for approximately one-third of the risk of developing disease. The study identified seven novel genetic risk loci that include genes involved in host defense, cell-cell adhesion, and DNA repair. These findings suggest that the disease is primarily initiated by defects in the lung's ability to defend against internal and environmental challenges.

This international collaborative research was led by scientists at the University of Colorado.
"The insightful leadership of Tasha Fingerlin, extraordinary contributions of Elissa Murphy, and active participation of many others ensured the success of this research and, in aggregate, we have established the scientific basis for early recognition and have identified novel therapeutic targets for this untreatable disease," says David A. Schwartz, MD, chairman of the Department of Medicine at the University of Colorado School of Medicine and senior author of the study. "These findings will change the way we think about pulmonary fibrosis and should eventually enhance the diagnostic and therapeutic options for our patients."

Fingerlin, PhD, and Murphy, MS, also authors of the study, are researchers at the Colorado School of Public Health and the CU School of Medicine.

The study, published in the April 14 edition of the journal Nature Genetics, is the first study to map out genes associated with IPF risk on a genome-wide scale. Three previously known genetic links were confirmed and seven novel loci were identified by studying the entire genome in this progressive incurable disease.

The work was supported by the National Heart, Lung, and Blood Institute (NHLBI). "In addition to expanding the library of genetic changes that can underlie pulmonary fibrosis, this study's findings demonstrate that both rare and common genetic variants contribute significantly to pulmonary fibrosis risk," says James Kiley, PhD, Director of NHLBI's Division of Lung Diseases. "A key next step for research is figuring out how these genetic variants work with environmental factors in the development of the disease."

Faculty at the University of Colorado School of Medicine work to advance science and improve care. These faculty members include physicians, educators and scientists at University of Colorado Hospital, Children's Hospital Colorado, Denver Health, National Jewish Health, and the Denver Veterans Affairs Medical Center. The school is located on the Anschutz Medical Campus, one of four campuses in the University of Colorado system. To learn more about the medical school's care, education, research and community engagement, please visit its web site. For additional news and information, please visit the University of Colorado Denver newsroom.

Keep up with the medical school and healthcare news on Facebook.

Mark Couch | EurekAlert!
Further information:
http://www.ucdenver.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>