Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic variation contributes to pulmonary fibrosis risk

16.04.2013
A newly published study of patients with pulmonary fibrosis has discovered multiple genetic variations that should help with future efforts to treat the disease.
Pulmonary fibrosis is a condition where lung tissue becomes thickened, stiff and scarred. Currently in the United States, there are no drugs approved for use in cases of the condition's most common and severe form, which is known as idiopathic pulmonary fibrosis (IPF) because the cause of the disease is not known. In those cases, the median survival time after diagnosis is two to three years and lung transplants are the only intervention known to prolong life.

This new study found evidence that common genetic variation is an important contributor to the risk of developing IPF, accounting for approximately one-third of the risk of developing disease. The study identified seven novel genetic risk loci that include genes involved in host defense, cell-cell adhesion, and DNA repair. These findings suggest that the disease is primarily initiated by defects in the lung's ability to defend against internal and environmental challenges.

This international collaborative research was led by scientists at the University of Colorado.
"The insightful leadership of Tasha Fingerlin, extraordinary contributions of Elissa Murphy, and active participation of many others ensured the success of this research and, in aggregate, we have established the scientific basis for early recognition and have identified novel therapeutic targets for this untreatable disease," says David A. Schwartz, MD, chairman of the Department of Medicine at the University of Colorado School of Medicine and senior author of the study. "These findings will change the way we think about pulmonary fibrosis and should eventually enhance the diagnostic and therapeutic options for our patients."

Fingerlin, PhD, and Murphy, MS, also authors of the study, are researchers at the Colorado School of Public Health and the CU School of Medicine.

The study, published in the April 14 edition of the journal Nature Genetics, is the first study to map out genes associated with IPF risk on a genome-wide scale. Three previously known genetic links were confirmed and seven novel loci were identified by studying the entire genome in this progressive incurable disease.

The work was supported by the National Heart, Lung, and Blood Institute (NHLBI). "In addition to expanding the library of genetic changes that can underlie pulmonary fibrosis, this study's findings demonstrate that both rare and common genetic variants contribute significantly to pulmonary fibrosis risk," says James Kiley, PhD, Director of NHLBI's Division of Lung Diseases. "A key next step for research is figuring out how these genetic variants work with environmental factors in the development of the disease."

Faculty at the University of Colorado School of Medicine work to advance science and improve care. These faculty members include physicians, educators and scientists at University of Colorado Hospital, Children's Hospital Colorado, Denver Health, National Jewish Health, and the Denver Veterans Affairs Medical Center. The school is located on the Anschutz Medical Campus, one of four campuses in the University of Colorado system. To learn more about the medical school's care, education, research and community engagement, please visit its web site. For additional news and information, please visit the University of Colorado Denver newsroom.

Keep up with the medical school and healthcare news on Facebook.

Mark Couch | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>