Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic variants linked to increased risk of common gynecological disease

Research published today identifies two genetic variants that increase the risk of developing endometriosis, a common gynaecological disease. The study provides clues to the origin of this often very painful condition, which has a significant impact on the quality of life of sufferers.

Details of the research, carried out at the Wellcome Trust Centre for Human Genetics and the Nuffield Department of Obstetrics & Gynaecology, University of Oxford; the Queensland Institute of Medical Research, Australia, and Brigham; and Women's Hospital and Harvard Medical School, Boston, USA, are published in the journal Nature Genetics.

Endometriosis is a common gynaecological disease affecting an estimated 6 to 10 per cent of all women in their reproductive years – an estimated 170 million women worldwide. It is characterised by the growth of cells similar to those lining the womb on organs in the pelvis, such as the ovaries and bowel. These deposits can cause inflammation and adhesions, and result in pelvic pain as well as infertility in some women. Why the deposits arise in the first place, and thrive outside the womb, is as yet largely unknown.

In some cases, endometriosis will only cause minor symptoms and go undiagnosed, but in more severe cases, debilitating symptoms can have a profound effect on the woman's life. The diagnosis can only be made reliably by looking into the pelvis with a laparoscope, which explains why it is common for years to pass before the diagnosis is made. Current treatments are limited to surgery and hormonal drugs that have numerous side-effects.

Now, researchers from the International Endogene Consortium have compared the genomes of over 5,500 women surgically diagnosed with the disease from the UK, Australia and the US, and compared them with almost 10,000 healthy volunteers. They have identified two new genetic variants that increase the risk of developing the disease, particularly moderate-severe stages.

"Endometriosis can be a painful and distressing condition that affects a significant number of women in their reproductive years," explains Dr Krina Zondervan, a Wellcome Trust Research Career Development Fellow at the University of Oxford and the study's Principal Investigator. "We've known for some time that endometriosis is heritable, but until now we have been unable to find any robust genetic variants that influence a woman's risk of developing the disease."

The first is a variant on chromosome 7 believed to be involved in regulating nearby genes, probably those involved in the development of the womb and its lining. The second variant was found on chromosome 1, close to the gene WNT4. This is important for hormone metabolism and the development of the female reproductive tract, especially the ovaries, making it an important biological candidate for involvement in endometriosis.

"Our study is a breakthrough because it provides the first strong evidence that variations in DNA make some women more likely to develop endometriosis," says Dr Zondervan. "We now need to understand the effect of these variations on cells and molecules in the body."

Dr Stephen Kennedy, Head of the Nuffield Department of Obstetrics & Gynaecology and joint senior author on the paper, adds: "We have great confidence that the results of this study will help towards developing less invasive methods of diagnosis and more effective treatments for endometriosis."

The study was funded by a grant from the Wellcome Trust as part of the Wellcome Trust Case Control Consortium 2, and builds on 15 years of collaborative work on the genetics of endometriosis between the research groups.

Craig Brierley | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>