Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic variants linked to increased risk of common gynecological disease

13.12.2010
Research published today identifies two genetic variants that increase the risk of developing endometriosis, a common gynaecological disease. The study provides clues to the origin of this often very painful condition, which has a significant impact on the quality of life of sufferers.

Details of the research, carried out at the Wellcome Trust Centre for Human Genetics and the Nuffield Department of Obstetrics & Gynaecology, University of Oxford; the Queensland Institute of Medical Research, Australia, and Brigham; and Women's Hospital and Harvard Medical School, Boston, USA, are published in the journal Nature Genetics.

Endometriosis is a common gynaecological disease affecting an estimated 6 to 10 per cent of all women in their reproductive years – an estimated 170 million women worldwide. It is characterised by the growth of cells similar to those lining the womb on organs in the pelvis, such as the ovaries and bowel. These deposits can cause inflammation and adhesions, and result in pelvic pain as well as infertility in some women. Why the deposits arise in the first place, and thrive outside the womb, is as yet largely unknown.

In some cases, endometriosis will only cause minor symptoms and go undiagnosed, but in more severe cases, debilitating symptoms can have a profound effect on the woman's life. The diagnosis can only be made reliably by looking into the pelvis with a laparoscope, which explains why it is common for years to pass before the diagnosis is made. Current treatments are limited to surgery and hormonal drugs that have numerous side-effects.

Now, researchers from the International Endogene Consortium have compared the genomes of over 5,500 women surgically diagnosed with the disease from the UK, Australia and the US, and compared them with almost 10,000 healthy volunteers. They have identified two new genetic variants that increase the risk of developing the disease, particularly moderate-severe stages.

"Endometriosis can be a painful and distressing condition that affects a significant number of women in their reproductive years," explains Dr Krina Zondervan, a Wellcome Trust Research Career Development Fellow at the University of Oxford and the study's Principal Investigator. "We've known for some time that endometriosis is heritable, but until now we have been unable to find any robust genetic variants that influence a woman's risk of developing the disease."

The first is a variant on chromosome 7 believed to be involved in regulating nearby genes, probably those involved in the development of the womb and its lining. The second variant was found on chromosome 1, close to the gene WNT4. This is important for hormone metabolism and the development of the female reproductive tract, especially the ovaries, making it an important biological candidate for involvement in endometriosis.

"Our study is a breakthrough because it provides the first strong evidence that variations in DNA make some women more likely to develop endometriosis," says Dr Zondervan. "We now need to understand the effect of these variations on cells and molecules in the body."

Dr Stephen Kennedy, Head of the Nuffield Department of Obstetrics & Gynaecology and joint senior author on the paper, adds: "We have great confidence that the results of this study will help towards developing less invasive methods of diagnosis and more effective treatments for endometriosis."

The study was funded by a grant from the Wellcome Trust as part of the Wellcome Trust Case Control Consortium 2, and builds on 15 years of collaborative work on the genetics of endometriosis between the research groups.

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>