New genetic tool helps researchers to analyse cells’ most important functions

One common way of studying the role of genes in cells is to remove a gene and investigate the effect of the loss. Genes are very similar in both yeast and people, which is one reason why the baker’s and brewer’s yeast Saccharomyces cerevisiae has become a firm favourite with geneticists – and in yeast it is easy to make this kind of genetic change.

However, this does not work for many genes as the loss causes the cells to die. These are known as essential genes and are therefore difficult to study. This is a major problem for researchers as essential genes are often involved in crucial life processes. These essential genes are also the most well-conserved over long evolutionary distances, like between humans and yeast.

Together with researchers from the University of Toronto, Anders Blomberg and Jonas Warringer from the University of Gothenburg’s Department of Cell- and Molecular Biology have produced a collection of nearly 800 strains of yeast cells where the function of these essential genes can be studied. This new genetic tool is now being made available to other researchers.

“The trick is to use temperature-sensitive mutants for the genes you want to study,” says professor Anders Blomberg. “These mutants have amino acid changes, which make the resultant protein sensitive to higher temperatures but able to function normally at normal temperatures. And at intermediary temperatures one can set the desired activity of the mutant protein.”

The Gothenburg researchers have worked for many years on characterising the changes in yeast mutants that result from genetic changes or environmental factors automatically and on a large scale. They will continue to develop and characterize the new collection of yeast cells to facilitate the systematic analysis of the function of all essential genes.

The applications of this genetic tool are exemplified in an article published in the scientific journal Nature Biotechnology.

Bibliographic data:
Journal: Nature Biotechnology
Title: Systematic exploration of essential yeast gene function with temperature-sensitive mutants

Authors: Zhijian Li, Franco J Vizeacoumar, Sondra Bahr, Jingjing Li, Jonas Warringer, Frederick S Vizeacoumar, Renqiang Min, Benjamin VanderSluis, Jeremy Bellay, Michael DeVit, James A Fleming, Andrew Stephens, Julian Haase, Zhen-Yuan Lin, Anastasia Baryshnikova, Hong Lu, Zhun Yan, Ke Jin, Sarah Barker, Alessandro Datti, Guri Giaever, Corey Nislow, Chris Bulawa, Chad L Myers, Michael Costanzo, Anne-Claude Gingras, Zhaolei Zhang

For more information, please contact:
Anders Blomberg, professor, Department of Cell- and Molecular Biology, University of Gothenburg, tel: +46 (0)31 786 2589

anders.blomberg@cmb.gu.se

Jonas Warringer, Department of Cell- and Molecular Biology, University of Gothenburg, tel: +46 (0)31 786 3961

jonas.warringer@cmb.gu.se

Media Contact

Helena Aaberg idw

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors