Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic testing technology for IVF embryos

24.05.2011
Generates enough material for several tests, improving choice of implanted embryos

Researchers at the Johns Hopkins University School of Medicine have devised a new technique, which helps couples that are affected by or are carriers of genetic diseases have in vitro fertilized babies free of both the disease in question and other chromosomal abnormalities. The results were reported in the April issue of Fertility and Sterility.

Because embryos are so small and cells contain too little DNA to do extensive testing, researchers have in the past had to limit genetic testing of IVF embryos to either looking for a specific gene mutation that is known to exist in either parent or for other types of chromosomal abnormalities such as the existence of too many or too few chromosomes (aneuploidy) or other structural chromosomal aberrations. By a method of trial and error that lasted approximately one year, Paul Brezina, M.D., M.B.A., a clinical fellow in obstetrics and gynecology and William G. Kearns, Ph.D., associate professor of obstetrics and gynecology optimized a technique they call "modified multiple displacement amplification" that allows them to amplify or make carbon copies of the DNA they obtain from an embryo obtained by in vitro fertilization, enough to do multiple tests.

"We were able to amplify the genomic DNA accurately to the point where both single-gene testing and aneuploidy screening could be done. Up till now it has only been one or the other," says Brezina.

Couples often first learn that they are carriers of a genetic disease, such as Cystic Fibrosis or Tay-Sachs, from having a previous child who is affected by the disease. Planning to have another baby, who may also be at risk for having the same disease, can be quite a daunting experience, says Brezina.

As a result, such couples have been turning to in vitro fertilization (IVF) coupled with preimplantation genetic diagnosis (PGD), genetic testing prior to implanting the embryos into the mother's uterus, to become pregnant. In PGD, which is also called single-gene testing, doctors remove either one cell from an IVF-conceived three-day old embryo, which contains only eight cells total, or a few cells from a five-day old embryo, which contains about 150 cells total. Removing more cells from the embryo is also an unviable option as it can compromise its health and development. They then test the DNA from these cells for the disease-causing genetic alteration. They then implant back into the mother only those embryos that will give rise to a baby free of the disease.

However, as much of a boon as PGD is, babies conceived in this manner are still exposed to other genetic risks, says Brezina, the most common being the gain or loss of chromosomes, a condition called aneuploidy. Aneuploidy can cause several diseases, the most commonly known of which is Down syndrome.

Brezina and Kearns applied their new modified multiple displacement technique to screen embryos from a couple where both parents were carriers for GM1 gangliosidosis, a potentially lethal disease that can cause seizures, bone malformations and mental disabilities; the couple already had one child with the disease and the mother was older and had a prior history of miscarriage. Brezina and Kearns amplified the DNA from the couple's embryos and sent some of the amplified DNA to their collaborators at the Reproductive Genetics Institute in Chicago for PGD testing for GM1 gangliosidosis. They had enough DNA leftover to test it for aneuploidy using a test called 23-chromosome microarray on embryos, a test developed by Kearns.

Of the ten IVF embryos that they tested, they found that although only two were affected by GM1 gangliosidosis, an additional three were also aneuploid, leaving them with only five healthy embryos available for transfer into the uterus. One of the healthy embryos was transferred back into the mother, who subsequently became pregnant. "The strength of this technique lies not only in its ability to detect two different kinds of genetic alterations while causing minimal harm to the embryo, but also in the speed with which it can be completed," says Kearns. "This allows the embryo to be transferred back into the mother in a timely manner."

Since the online publication of this study in December 2010, Kearns, who also directs the Shady Grove Center for Preimplantation Genetics in Rockville, MD, has offered combined PGD and aneuploidy testing to seven more couples. Five of these seven couples have achieved pregnancy with this technique and one couple is scheduled to transfer an embryo in the near future. Speaking of one of the couples, he says, "I am really happy for this couple. She is a 39-year-old woman who is a carrier for Fragile X syndrome (a genetic disease that causes mental disabilities) and had two first trimester miscarriages. We did the same methodology on her and now she is pregnant. It is spectacular."

And they aren't stopping there. Kearns and Brezina are trying to further improve existing technologies so that they can more accurately identify genetic abnormalities in IVF embryos. "IVF is only going to become more relevant as time goes on and as it gets better and better," says Brezina. He adds "The ability to know detailed information about the embryos you are putting back in, it is a powerful thing."

No external sources of funding were used in this research.

Authors on the paper are Paul Brezina and William Kearns of Johns Hopkins; Andrew Benner of the Shady Grove Center of Preimplanation Genetics of Rockville, Md.; and Svetlana Rechitsky, AnverKuliev, Ekaterina Pomerantseva and Dana Pauling of Reproductive Genetics Institute of Chicago, Ill.

On the Web:
Johns Hopkins Gynecology and Obstetrics http://www.hopkinsmedicine.org/gynecology_obstetrics/

Johns Hopkins Fertility Center http://www.hopkinsmedicine.org/fertility/team/physicians/

John Lazarou | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>