Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic testing technology for IVF embryos

24.05.2011
Generates enough material for several tests, improving choice of implanted embryos

Researchers at the Johns Hopkins University School of Medicine have devised a new technique, which helps couples that are affected by or are carriers of genetic diseases have in vitro fertilized babies free of both the disease in question and other chromosomal abnormalities. The results were reported in the April issue of Fertility and Sterility.

Because embryos are so small and cells contain too little DNA to do extensive testing, researchers have in the past had to limit genetic testing of IVF embryos to either looking for a specific gene mutation that is known to exist in either parent or for other types of chromosomal abnormalities such as the existence of too many or too few chromosomes (aneuploidy) or other structural chromosomal aberrations. By a method of trial and error that lasted approximately one year, Paul Brezina, M.D., M.B.A., a clinical fellow in obstetrics and gynecology and William G. Kearns, Ph.D., associate professor of obstetrics and gynecology optimized a technique they call "modified multiple displacement amplification" that allows them to amplify or make carbon copies of the DNA they obtain from an embryo obtained by in vitro fertilization, enough to do multiple tests.

"We were able to amplify the genomic DNA accurately to the point where both single-gene testing and aneuploidy screening could be done. Up till now it has only been one or the other," says Brezina.

Couples often first learn that they are carriers of a genetic disease, such as Cystic Fibrosis or Tay-Sachs, from having a previous child who is affected by the disease. Planning to have another baby, who may also be at risk for having the same disease, can be quite a daunting experience, says Brezina.

As a result, such couples have been turning to in vitro fertilization (IVF) coupled with preimplantation genetic diagnosis (PGD), genetic testing prior to implanting the embryos into the mother's uterus, to become pregnant. In PGD, which is also called single-gene testing, doctors remove either one cell from an IVF-conceived three-day old embryo, which contains only eight cells total, or a few cells from a five-day old embryo, which contains about 150 cells total. Removing more cells from the embryo is also an unviable option as it can compromise its health and development. They then test the DNA from these cells for the disease-causing genetic alteration. They then implant back into the mother only those embryos that will give rise to a baby free of the disease.

However, as much of a boon as PGD is, babies conceived in this manner are still exposed to other genetic risks, says Brezina, the most common being the gain or loss of chromosomes, a condition called aneuploidy. Aneuploidy can cause several diseases, the most commonly known of which is Down syndrome.

Brezina and Kearns applied their new modified multiple displacement technique to screen embryos from a couple where both parents were carriers for GM1 gangliosidosis, a potentially lethal disease that can cause seizures, bone malformations and mental disabilities; the couple already had one child with the disease and the mother was older and had a prior history of miscarriage. Brezina and Kearns amplified the DNA from the couple's embryos and sent some of the amplified DNA to their collaborators at the Reproductive Genetics Institute in Chicago for PGD testing for GM1 gangliosidosis. They had enough DNA leftover to test it for aneuploidy using a test called 23-chromosome microarray on embryos, a test developed by Kearns.

Of the ten IVF embryos that they tested, they found that although only two were affected by GM1 gangliosidosis, an additional three were also aneuploid, leaving them with only five healthy embryos available for transfer into the uterus. One of the healthy embryos was transferred back into the mother, who subsequently became pregnant. "The strength of this technique lies not only in its ability to detect two different kinds of genetic alterations while causing minimal harm to the embryo, but also in the speed with which it can be completed," says Kearns. "This allows the embryo to be transferred back into the mother in a timely manner."

Since the online publication of this study in December 2010, Kearns, who also directs the Shady Grove Center for Preimplantation Genetics in Rockville, MD, has offered combined PGD and aneuploidy testing to seven more couples. Five of these seven couples have achieved pregnancy with this technique and one couple is scheduled to transfer an embryo in the near future. Speaking of one of the couples, he says, "I am really happy for this couple. She is a 39-year-old woman who is a carrier for Fragile X syndrome (a genetic disease that causes mental disabilities) and had two first trimester miscarriages. We did the same methodology on her and now she is pregnant. It is spectacular."

And they aren't stopping there. Kearns and Brezina are trying to further improve existing technologies so that they can more accurately identify genetic abnormalities in IVF embryos. "IVF is only going to become more relevant as time goes on and as it gets better and better," says Brezina. He adds "The ability to know detailed information about the embryos you are putting back in, it is a powerful thing."

No external sources of funding were used in this research.

Authors on the paper are Paul Brezina and William Kearns of Johns Hopkins; Andrew Benner of the Shady Grove Center of Preimplanation Genetics of Rockville, Md.; and Svetlana Rechitsky, AnverKuliev, Ekaterina Pomerantseva and Dana Pauling of Reproductive Genetics Institute of Chicago, Ill.

On the Web:
Johns Hopkins Gynecology and Obstetrics http://www.hopkinsmedicine.org/gynecology_obstetrics/

Johns Hopkins Fertility Center http://www.hopkinsmedicine.org/fertility/team/physicians/

John Lazarou | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>