Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic testing can identify men at 6-fold increased risk of prostate cancer

15.09.2014

Scientists can now explain one-third of the inherited risk of prostate cancer, after a major international study identified 23 new genetic variants associated with increased risk of the disease

Scientists can now explain a third of the inherited risk of prostate cancer, after a major international study identified 23 new genetic variants associated with increased risk of the disease.

The study brings the total number of common genetic variants linked to prostate cancer to 100, and testing for them can identify 1% of men with a risk of the disease almost six times as high as the population average.

Scientists at The Institute of Cancer Research, London, and in Cambridge, UK, and California led a huge search for new genetic variants including almost 90,000 men and for the first time combining populations with European, African, Japanese and Latino ancestry.

... more about:
»Genetic »prostate »risk »variants

The research, published today (Sunday) in Nature Genetics, was funded in equal amounts by Cancer Research UK, Prostate Cancer UK, the EU and the National Institutes for Health in the US.

Researchers found that assessing the top 100 variants identified 10% of men with a risk almost three times as high as the population average, and said that this was high enough to investigate whether targeted genetic screening was merited. They plan to lead a new clinical trial to test whether genetic screening can be effective.

In European men, scientists had previously found 77 genetic variants which were known to increase the risk of prostate cancer.

In the new research, scientists from The Institute of Cancer Research (ICR), University of Cambridge and the University of Southern California in the US examined the genetic information of 87,040 men from all over the world.

They combined genetic population studies of 43,303 men with prostate cancer and 43,737 controls from European, African, Japanese or Latino heritage to improve statistical power and increase their chances of identifying new variants.

From this combined population, they identified 16 new genetic markers linked to prostate cancer risk in European men - one of them associated with increased risk of early-onset disease - and seven in men of mixed heritage.

The study means that scientists can now explain 33% of the inherited origins of prostate cancer in European men. A new clinical trial called BARCODE, which aims to genetically screen 5,000 men for prostate cancer, will investigate if these genetic markers can improve on other tests for the disease.

They are investigating whether genetic testing could help diagnose more men at risk of developing dangerous forms of prostate cancer that need urgent treatment – something that the current PSA test is unable to tell us.

The new study shows that for European men assessed for the 100 common variants, the 10% at highest risk are 2.9 times more likely than the average person to develop prostate cancer, while the top 1% are 5.7 times more likely to develop the disease.

Professor Ros Eeles, Professor of Oncogenetics at The Institute of Cancer Research, London, and Honorary Consultant in Clinical Oncology at The Royal Marsden NHS Foundation Trust, said: "Our study tells us more about the effect of the genetic hand that men are dealt on their risk of prostate cancer. We know that there are a few major genes that are rare and significantly affect prostate cancer risk, but what we are now learning is that there are many other common genetic variants that individually have only a small effect on risk, but collectively can be very important. To use the playing cards analogy again, sometimes multiple low cards can combine to form a high risk score.

"We can now explain a third of the inherited risk of prostate cancer, and will shortly be conducting a clinical trial to find out whether testing for genetic variants in men can successfully pick up the disease early, and help direct targeted interventions for patients."

Professor Malcolm Mason, prostate cancer expert for Cancer Research UK, said: "This important research continues a quest to unravel the complex picture of the genetic factors that increase a man's risk of prostate cancer.

"Building on previous research this study gives a more complete list of these factors, bringing us closer to knowing who may need screening for prostate cancer and which men may benefit from early treatment. More work needs to be done, but identifying these genetic factors will allow us to better understand the disease and maybe even develop new treatments."

Dr Matthew Hobbs, Deputy Director of Research at Prostate Cancer UK said: "There's no doubt that genetic testing for prostate cancer is an exciting area of research. The results of this study could take us a step closer to targeted screening by allowing us to identify those most at risk of the disease based on the genes that they possess. However, this is not the end of the story and the challenge now lies in translating this knowledge into a reliable test that can be used on a large scale through the NHS to find those men at highest risk.

"It is also absolutely vital that researchers build on this work to discover which of these genetic variants can tell us whether a man's cancer is aggressive and likely to go on to kill him, or one that may never cause any harm. This would save those men with non-aggressive disease from undergoing unnecessary treatment."

Graham Shaw | Eurek Alert!
Further information:
http://www.icr.ac.uk/

Further reports about: Genetic prostate risk variants

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>