Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Genetic Test for Predicting IVF Success

13.01.2011
A researcher at Albert Einstein College of Medicine of Yeshiva University has helped to develop the first genetic blood test for predicting the chances that in vitro fertilization (IVF) will lead to a successful pregnancy.

The test, reported in the online medical journal PLoS One, is based on the finding that different subtypes of the FMR1 gene (also known as the fragile X mental retardation gene) in potential mothers are associated with significantly different chances of conceiving with IVF.

“This is the first evidence that a specific gene appears to be directly associated with IVF outcomes,” said David Barad, M.D., associate clinical professor of epidemiology & population health and of obstetrics & gynecology and women’s health at Einstein and one of the study’s senior authors. Dr. Barad is also director of assisted reproduction at the Center for Human Reproduction (CHR) in New York City.

“Our research also suggests the FMR1 gene, some forms of which are known to predict premature ovarian failure, could be used to predict at what age a woman’s fertility is going to start decreasing,” he added.

The study also supports the belief that autoimmunity (immunity to one’s own cells or tissues) plays a role in infertility – a controversial topic among reproductive medicine specialists.

The study involved 339 female infertility patients who underwent a total of 455 IVF cycles at CHR. The researchers investigated the relationship between three different FMR1 genotypes and pregnancy outcomes and autoimmunity levels. Women with the “normal” FMR1 genotype had a 38.6 percent pregnancy rate; those with the “heterozygous-normal/high” genotype had a 31.7 percent pregnancy rate; and women found to have the “heterozygous-normal/low” genotype had a 22.2 percent pregnancy rate.

The genotype associated with the lowest pregnancy rate (heterozygous-normal/low) was also associated with increased measures of autoimmunity. Women with this genotype also had a higher incidence of polycystic ovary syndrome (a common cause of infertility), which is thought to have an autoimmune component. “Previous studies have suggested that autoimmunity plays a role in infertility,” said Dr. Barad. “Now, for the first time, we have a potential genetic mechanism that underlies several different threats to infertility.”

The cost of the blood test for the FMR1 should be relatively low – comparable to screening tests for Tay-Sachs and other genetic diseases. While the FMR1 gene test is not yet clinically available, “It’s likely that the findings will lead to clinical applications in the future,” said Dr. Barad.

“Any test that is proven to have predictive value for a woman’s fertility would give her a heads up in terms of planning a family,” he added. “For instance, if a woman planning to go to law school or medical school learns she has a certain amount of risk of losing her ovarian function before she is 35, she may choose to bank her eggs or try having children at an earlier age, rather than delay.”

Dr. Barad’s paper, “FMR1 Genotype with Autoimmunity-Associated Polycystic Ovary-Like Phenotype and Decreased Pregnancy Chance,” was published in the December 2010 issue of the online journal PLoS One. The other senior author is Norbert Gleicher, M.D., of Yale School of Medicine and CHR.

About Albert Einstein College of Medicine of Yeshiva University
Albert Einstein College of Medicine of Yeshiva University is one of the nation’s premier centers for research, medical education and clinical investigation. During the 2010-2011 academic year, Einstein is home to 724 M.D. students, 256 Ph.D. students, 122 students in the combined M.D./Ph.D. program, and 375 postdoctoral research fellows. The College of Medicine has 2,770 fulltime faculty members located on the main campus and at its clinical affiliates. In 2009, Einstein received more than $135 million in support from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Through its extensive affiliation network involving five medical centers in the Bronx, Manhattan and Long Island – which includes Montefiore Medical Center, The University Hospital and Academic Medical Center for Einstein – the College of Medicine runs one of the largest post-graduate medical training programs in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training. For more information, please visit www.einstein.yu.edu.

Kim Newman | Newswise Science News
Further information:
http://www.einstein.yu.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>