Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic technique converts skin cells into brain cells

09.06.2011
A research breakthrough has proven that it is possible to reprogram mature cells from human skin directly into brain cells, without passing through the stem cell stage.

The unexpectedly simple technique involves activating three genes in the skin cells; genes which are already known to be active in the formation of brain cells at the foetal stage.

The new technique avoids many of the ethical dilemmas that stem cell research has faced.

For the first time, a research group at Lund University in Sweden has succeeded in creating specific types of nerve cells from human skin. By reprogramming connective tissue cells, called fibroblasts, directly into nerve cells, a new field has been opened up with the potential to take research on cell transplants to the next level. The discovery represents a fundamental change in the view of the function and capacity of mature cells. By taking mature cells as their starting point instead of stem cells, the Lund researchers also avoid the ethical issues linked to research on embryonic stem cells.

Head of the research group Malin Parmar was surprised at how receptive the fibroblasts were to new instructions.

“We didn’t really believe this would work, to begin with it was mostly just an interesting experiment to try. However, we soon saw that the cells were surprisingly receptive to instructions.”

The study, which was published in the latest issue of the scientific journal PNAS, also shows that the skin cells can be directed to become certain types of nerve cells.

In experiments where a further two genes were activated, the researchers have been able to produce dopamine brain cells, the type of cell which dies in Parkinson’s disease. The research findings are therefore an important step towards the goal of producing nerve cells for transplant which originate from the patients themselves. The cells could also be used as disease models in research on various neurodegenerative diseases.

Unlike older reprogramming methods, where skin cells are turned into pluripotent stem cells, known as IPS cells, direct reprogramming means that the skin cells do not pass through the stem cell stage when they are converted into nerve cells. Skipping the stem cell stage probably eliminates the risk of tumours forming when the cells are transplanted. Stem cell research has long been hampered by the propensity of certain stem cells to continue to divide and form tumours after being transplanted.

Before the direct conversion technique can be used in clinical practice, more research is needed on how the new nerve cells survive and function in the brain. The vision for the future is that doctors will be able to produce the brain cells that a patient needs from a simple skin or hair sample. In addition, it is presumed that specifically designed cells originating from the patient would be accepted better by the body’s immune system than transplanted cells from donor tissue.

“This is the big idea in the long run. We hope to be able to do a biopsy on a patient, make dopamine cells, for example, and then transplant them as a treatment for Parkinson’s disease”, says Malin Parmar, who is now continuing the research to develop more types of brain cells using the new technique.

Article: ‘Direct conversion of human fibroblasts to dopaminergic neurons’, publ. PNAS 2011; 6 June 2011

Contact:
Malin Parmar, Reader in Neurobiology at Lund University, Sweden, tel.: +46 46 222 0620, work mobile: +46 709 823901. Email malin.parmar@med.lu.se

Megan Grindlay | idw
Further information:
http://www.vr.se
http://www.pnas.org/content/early/2011/06/02/1105135108.abstract?sid=a15dfa57-9b1d-45cf-ae06-f4a0be8a39cf

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>