Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic switch regulates a plant's internal clock based on temperature


New research could 1 day lead to heartier plants, better adapted to deal with climate change

Scientists have discovered a key molecular cog in a plant's biological clock – one that modulates the speed of circadian (daily) rhythms based on temperature.

Dr. Steve A. Kay confers with a student in his lab.

Credit: Emily Cavalcanti / USC Dornsife

Transcription factors, or genetic switches, drive gene expression in plants based on external stresses – such as light, rain, soil quality, or even animals grazing on them. A team of researchers at USC has isolated one, called FBH1, that reacts to temperature – tweaking the rhythm here and there as needed while in keeping it on a consistent track.

"Temperature helps keep the hands of the biological clock in the right place," said Steve A. Kay, dean of the USC Dornsife College of Letters, Arts and Sciences and the corresponding author of the study. "Now we know more about how that works."

Kay worked with lead author Dawn Nagel, a post-doc9/22/2014toral researcher at USC; and coauthor Jose Pruneda-Paz, an assistant professor at the University of California-San Diego, on the study, which was published by Proceedings of the National Academy of Sciences on Sept. 22.

Understanding the mechanics of how the interactions between the biological clock and the transcriptional network work could allow scientists to breed plants that are better able to deal with stressful environments – crucial in a world where farmers attempt to feed an increasing population amid urban development of arable land and a rising global temperature.

"Global climate change suggests that it's going to get warmer and since plants cannot run away from the heat, they're going to have to adapt to a changing environment. This study suggests one mechanism for us to understand how this interaction works," Nagel said.

Both plants and animals have transcription factors, but plants have on average six times as many – likely because they lack the ability to get up and walk away from any of their stressors.

"Plants have to be exquisitely tuned to their environment," Kay said. "They have evolved mechanisms to deal with things that we take for granted. Even light can be a stressor, if you are rooted to one location."

Among other things, Kay's research explores how these transcription factors affect plants' circadian rhythms, which set the pace and schedule for how plants grow.

Kay and his team conducted their research on Arabidopsis, a flowering member of the mustard family that is used as a model organism by scientists because of its high seed production, short life cycle, and the fact that now all of its genome has been sequenced.


This research was funded by the Ruth L. Kirschstein National Research Service Award (F32GM090375), and the National Instiutes of Health, National Institute of General Medical Sciences (R01GM056006, R01Gm067837, and RC2GM092412).

Robert Perkins | Eurek Alert!

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>