Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic changes behind sweet tooth

05.04.2011
The substance ghrelin plays an important role in various addictions, such as alcoholism and binge-eating. It also impacts on sugar consumption, which is due, in part, to genetic factors, reveals new research from the University of Gothenburg, Sweden.

Ghrelin is a neuropeptide that both activates the brain’s reward system and increases appetite. This means that when we are hungry, levels of ghrelin increase, activating the brain’s reward system, and this, in turn, increases our motivation to look for food. Previous research from the Sahlgrenska Academy has linked ghrelin to the development of various dependencies, such as drug addiction and alcoholism.

In a new study published in the online version of the journal PlosOne, researchers examined the genes of 579 individuals chosen from the general public. It emerged that people with certain changes in the ghrelin gene consume more sugar than their peers who do not have these changes. This link was also seen in people who consumed large amounts of both sugar and alcohol.

Trials have also been carried out using rats, where the researchers found that when ghrelin was blocked the rats reduced their consumption of sugar and were less motivated to hunt for sugar.

“This shows that ghrelin is a strong driver when it comes to tracking down rewarding substances such as sugar or alcohol,” says researcher Elisabet Jerlhag from the Sahlgrenska Academy’s Department of Pharmacology.

These results go hand in hand with the researchers’ previous findings which showed that substances that block the ghrelin system reduce the positive effects of addictive drugs and that changes in the ghrelin gene are associated with high alcohol consumption, weight gain in alcoholics and smoking.

The researchers are now a step closer to understanding what happens in the brain and the body in different types of addictive behavior. Understanding these mechanisms means that new drugs can be developed to block the ghrelin system and used to treat patients who are addicted to alcohol or who suffer from binge-eating disorders.

“This knowledge could also make it easier for society to view dependency as an illness and could mean that these people can get the treatment they need more readily,” says Jerlhag.

For more information, please contact:
Jörgen Engel, registered doctor and professor emeritus at the Department of Pharmacology, Sahlgrenska Academy, tel: +46 (0)31 786 3416, mobile: +46 (0)734 204 412, e-mail: jorgen.engel@pharm.gu.se
Elisabet Jerlhag, researcher at the Department of Pharmacology, Sahlgrenska Academy,

tel: +46 (0)31 786 3418, mobile: +46 (0)736 483 336, e-mail: elisabet.jerlhag@pharm.gu.se

Journal: PlosOne
Title of article: The ghrelin signalling system is involved in the consumption of sweets.

Authors: Sara Landgren, Jeffrey A Simms, Dag S Thelle, Elisabeth Strandhagen, Lauren Lissner, Selena E Bartlett, Jörgen A Engel, Elisabet Jerlhag

Weitere Informationen:
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018170 - Article

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>