Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Study Offers Insight into the Social Life of Bees

12.04.2011
Most people have trouble telling them apart, but bumble bees, honey bees, stingless bees and solitary bees have home lives that are as different from one another as a monarch’s palace is from a hippy commune or a hermit’s cabin in the woods. A new study of these bees offers a first look at the genetic underpinnings of their differences in lifestyle.

The study focuses on the evolution of “eusociality,” a system of collective living in which most members of a female-centric colony forego their reproductive rights and instead devote themselves to specialized tasks – such as hunting for food, defending the nest or caring for the young – that enhance the survival of the group. The study appears in the Proceedings of the National Academy of Sciences.

Eusociality is a rarity in the animal world, said Gene Robinson, a University of Illinois entomology professor and the director of the Institute for Genomic Biology, who led the study. Ants, termites, some bees and wasps, a few other arthropods and a couple of mole rat species are the only animals known to be eusocial.

Among bees, there are the “highly eusocial” honey bees and stingless bees, with a caste of sterile workers and a queen that functions primarily as a “giant, egg-laying machine,” Robinson said. And there are other, so-called “primitively eusocial” insects, usually involving a single mom who starts a nest from scratch and then, once she has raised enough workers, “kicks back and becomes a queen,” he said.

Illinois entomology professor Sydney Cameron, a collaborator on the study and a social insect evolution expert, dislikes the term “primitively eusocial” because it suggests that these bees are on their way to becoming more like stingless bees or honey bees. Eusociality is not a progressive evolution from the “primitive” to the “advanced” stage, she said.

“They’re not striving to become highly eusocial,” Cameron said. “They don’t say to themselves, ‘If only I could become a honey bee!’ ”

“People talk about the evolution of eusociality,” Robinson said. “But we want to emphasize that these were independent evolutionary events. And we wanted to trace the independent stories of each.”

To accomplish this, the researchers worked with Roche Diagnostic Corp. to sequence active genes (those transcribed for translation into proteins) in nine species of bees representing every lifestyle from the solitary leaf-cutter bee, Megachile rotundata, to the highly eusocial dwarf honey bee, Apis florea. Then Illinois crop sciences professor and co-author Matt Hudson used the only available bee genome, that of the honey bee, Apis mellifera, as a guide to help assemble and identify the sequenced genes in the other species, and the team looked for patterns of genetic change that coincided with the evolution of the differing social systems.

“Are there genes that are unique to the primitively eusocial bees that aren’t found in the highly eusocial bees?” Cameron said. “Or if you lump all the eusocial bees together, are there unique genes that unite those groups compared to the solitaries?”

The analysis did find significant differences in gene sequence between the eusocial and solitary bees. The researchers also saw patterns of genetic change unique to either the highly eusocial or primitively eusocial bees. The frequency and pattern of these changes in gene sequence suggest “signatures of accelerated evolution” specific to each type of eusociality, and to eusociality in general, the researchers reported.

“What we find is that there are some genes that show signatures of selection across the different independent evolutions (of eusocial bees),” Robinson said. “They might be representatives of the ‘gotta have it’ genes if you’re going to evolve eusociality. But others are more lineage-specific.”

This study was made possible with a one-gigabyte sequencing grant from 454 Life Sciences (Roche Diagnostics Corp.) by way of the Roche 1GB contest. The National Science Foundation and the National Institutes of Health also supported the research.

The study team also included researchers from Cornell University and from the Program in Ecology, Evolution and Conservation Biology and the Institute for Genomic Biology at Illinois.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>