Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Study Offers Insight into the Social Life of Bees

12.04.2011
Most people have trouble telling them apart, but bumble bees, honey bees, stingless bees and solitary bees have home lives that are as different from one another as a monarch’s palace is from a hippy commune or a hermit’s cabin in the woods. A new study of these bees offers a first look at the genetic underpinnings of their differences in lifestyle.

The study focuses on the evolution of “eusociality,” a system of collective living in which most members of a female-centric colony forego their reproductive rights and instead devote themselves to specialized tasks – such as hunting for food, defending the nest or caring for the young – that enhance the survival of the group. The study appears in the Proceedings of the National Academy of Sciences.

Eusociality is a rarity in the animal world, said Gene Robinson, a University of Illinois entomology professor and the director of the Institute for Genomic Biology, who led the study. Ants, termites, some bees and wasps, a few other arthropods and a couple of mole rat species are the only animals known to be eusocial.

Among bees, there are the “highly eusocial” honey bees and stingless bees, with a caste of sterile workers and a queen that functions primarily as a “giant, egg-laying machine,” Robinson said. And there are other, so-called “primitively eusocial” insects, usually involving a single mom who starts a nest from scratch and then, once she has raised enough workers, “kicks back and becomes a queen,” he said.

Illinois entomology professor Sydney Cameron, a collaborator on the study and a social insect evolution expert, dislikes the term “primitively eusocial” because it suggests that these bees are on their way to becoming more like stingless bees or honey bees. Eusociality is not a progressive evolution from the “primitive” to the “advanced” stage, she said.

“They’re not striving to become highly eusocial,” Cameron said. “They don’t say to themselves, ‘If only I could become a honey bee!’ ”

“People talk about the evolution of eusociality,” Robinson said. “But we want to emphasize that these were independent evolutionary events. And we wanted to trace the independent stories of each.”

To accomplish this, the researchers worked with Roche Diagnostic Corp. to sequence active genes (those transcribed for translation into proteins) in nine species of bees representing every lifestyle from the solitary leaf-cutter bee, Megachile rotundata, to the highly eusocial dwarf honey bee, Apis florea. Then Illinois crop sciences professor and co-author Matt Hudson used the only available bee genome, that of the honey bee, Apis mellifera, as a guide to help assemble and identify the sequenced genes in the other species, and the team looked for patterns of genetic change that coincided with the evolution of the differing social systems.

“Are there genes that are unique to the primitively eusocial bees that aren’t found in the highly eusocial bees?” Cameron said. “Or if you lump all the eusocial bees together, are there unique genes that unite those groups compared to the solitaries?”

The analysis did find significant differences in gene sequence between the eusocial and solitary bees. The researchers also saw patterns of genetic change unique to either the highly eusocial or primitively eusocial bees. The frequency and pattern of these changes in gene sequence suggest “signatures of accelerated evolution” specific to each type of eusociality, and to eusociality in general, the researchers reported.

“What we find is that there are some genes that show signatures of selection across the different independent evolutions (of eusocial bees),” Robinson said. “They might be representatives of the ‘gotta have it’ genes if you’re going to evolve eusociality. But others are more lineage-specific.”

This study was made possible with a one-gigabyte sequencing grant from 454 Life Sciences (Roche Diagnostics Corp.) by way of the Roche 1GB contest. The National Science Foundation and the National Institutes of Health also supported the research.

The study team also included researchers from Cornell University and from the Program in Ecology, Evolution and Conservation Biology and the Institute for Genomic Biology at Illinois.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>