Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic study helps to solve Darwin's mystery about the ancient evolution of flowering plants

11.04.2011
The evolution and diversification of the more than 300,000 living species of flowering plants may have been "jump started" much earlier than previously calculated, a new study indicates.

According to Claude dePamphilis, a professor of biology at Penn State University and the lead author of the study, which includes scientists at six universities, two major upheavals in the plant genome occurred hundreds of millions of years ago -- nearly 200 million years earlier than the events that other research groups had described.

The research also indicates that these upheavals produced thousands of new genes that may have helped drive the evolutionary explosion that led to the rich diversity of present-day flowering plants. The study, which provides a wealth of new genetic data and a more precise evolutionary time scale, is expected to change the way biologists view the family trees of plants in general and flowering plants in particular. The research findings will be posted on the early-online website of the journal Nature on 10 April 2011, and later will be published in the journal.

"We began with some intense genomic detective work -- combing through nine previously sequenced plant genomes, plus millions of new gene sequences that the Ancestral Angiosperm Genome Project (http://ancangio.uga.edu/) had gathered from the earliest surviving lineages of flowering plants," dePamphilis said. "We knew that, at some point in ancient history, one or more important genetic metamorphoses had occurred in the ancestor of flowering plants, and we also knew that these metamorphoses could explain the enormous success of so many species living on the Earth today. Most importantly, we suspected that these important changes had been driven by a common mechanism instead of by many independent events." DePamphilis explained that, after examining volumes of molecular evidence, his team discovered and calculated the dates for two instances of a special kind of DNA mutation -- called a polyploidy event -- that revolutionized the flowering-plant lineage.

"A polyploidy event is basically the acquisition, through mutation, of a 'double dose' of genetic material," explained Yuannian Jiao, a graduate student at Penn State and the first author of the study. "In vertebrates, although genome duplication is known to occur, it generally is lethal. Plants, on the other hand, often survive and can sometimes benefit from duplicated genomes." Jiao explained that, over the generations, most duplicated genes from polyploidy events simply are lost. However, other genes adopt new functions or, in some instances, subdivide the workload with the genetic segments that were duplicated, thereby cultivating more efficiency and better specialization of tasks for the genome as a whole.

Jiao also explained that, although ancient events of polyploidy have been well documented in plant-genome-sequencing projects, biologists had dated the earliest polyploidy event in flowering plants at around 125 to 150 million years ago. "There were hints that even earlier events had occurred, but no good evidence," Jiao said. "That's what makes our team's findings so exciting. We identified at least two major events -- one occurring in the ancestor of all seed plants about 320 million years ago, and another occurring in the flowering-plant lineage specifically, about 192 to 210 million years ago. That's up to 200 million years earlier than such events were assumed to have taken place."

DePamphilis added that such polyploidy events probably set in motion a kind of genomic renaissance, and that present-day varieties now are reaping the rewards. "Thanks to events such as these, where vast stretches of DNA have been duplicated and added to the genome, flowering plants have been able to evolve new and better functions. They have seized on the opportunity to become so diverse, so exquisite, and so prevalent," dePamphilis said. He explained that his team was able to trace the history of some of the major genes that define how flowering plants work. "Some of these new genes led to true innovations and have become vital parts of the genetic toolkit for the regulation of flower development," he said. "In other words, without the genes that these polyploidy events helped to create, flowering plants as we know them today probably would not exist."

DePamphilis also said that, thanks to the two polyploidy events that his research team identified, flowering plants may have enjoyed a distinct evolutionary advantage that allowed them to survive harsh climate changes and even mass extinctions. One such extinction that was accompanied by more-recent polyploidy events in several flowering-plant groups was the Cretaceous–Tertiary extinction event (the K-T event) -- a mass extinction of animals and plants that occurred approximately 65.5 million years ago that may have been triggered by a massive asteroid impact.

"Ever since Charles Darwin so famously called the rapid diversification of flowering plants in the fossil record an 'abominable mystery,' generations of scientists have worked to solve this puzzle," dePamphilis said. "We used to say that most of the hundreds of thousands of successful species of flowering plants show genetic traces of ancient polyploidy events. The further we push back the date of when these events happened, the more confidently we can claim that, not most, but all flowering plants are the result of large-scale duplications of the genome. It's possible that the important polyploidy events we've identified were the equivalent of two 'big bangs' for flowering plants."

In addition to dePamphilis and Jiao, other researchers who contributed to the study include Norman J. Wickett, Lena Landherr, Paula E. Ralph, Lynn P. Tomsho, Yi Hu, Stephan C. Schuster, and Hong Ma from Penn State; Saravanaraj Ayyampalayam and Jim Leebens-Mack from the University of Georgia; André S. Chanderbali, Pamela S. Soltis, and Douglas E. Soltis from the University of Florida; Haiying Liang from Clemson University; Sandra W. Clifton from Washington University; and Scott E. Schlarbaum from the University of Tennessee.

The work was funded, primarily, by the National Science Foundation Plant Genome Research Program (the Ancestral Angiosperm Genome Project), and, in part, by the Penn State Department of Biology, the Huck Institutes of the Life Sciences at Penn State, and Fudan University in China.

CONTACTS
Claude dePamphilis: 814-321-2256, cwd3@psu.edu
Barbara Kennedy (PIO): 814-863-4682, science@psu.edu

Barbara Kennedy | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: Angiosperm DNA Genom flowering plant mass extinction

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>