Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic study clarifies evolutionary origin of elusive montane red fox

23.05.2011
North American red foxes originated from two separate genetic lineages that were isolated from each other by glaciers some half a million years ago, according to a U.S. Forest Service Pacific Northwest Research Station study.

The research—featured in the April/May 2011 issue of Science Findings, a monthly publication of the station—can assist efforts aimed at conserving potentially imperiled montane populations of the species.

"When most people think of the red fox, they envision the ones that thrive in low-elevation, human-dominated landscapes," said Keith Aubry, a research wildlife biologist at the station who led the study. "But there are other extremely elusive and rarely seen populations that live only in isolated alpine and subalpine areas in the mountains of the Western United States."

The latter group—the montane red foxes—may be imperiled by climate change and other contemporary pressures and were the focus of Aubry's doctoral work in the early 1980s. Contrary to prevailing theory at the time, Aubry hypothesized that native North American red foxes were descended from two distinct lineages, not one, that were isolated from each other in both northern and southern ice-free areas during the most recent Ice Age. Such an evolutionary history would help explain the unique ecological adaptations of the montane foxes, and why native red foxes in southern British Columbia are so much bigger than the montane foxes that occupy nearly adjacent areas in Washington's Cascade Range.

"If all of North America's foxes originated from a single lineage that had expanded its distribution in a wave across the continent, you'd expect to see a more or less continuous gradient in size," Aubry said. "But there was an abrupt discontinuity in size in that area, suggesting that the montane red foxes had evolved in isolation from the northern populations," Aubry said.

Only recently were Aubry and his colleagues able to test this hypothesis through genetic analyses of 285 museum specimens and a close examination of fossil, archeological, historical, and ecological records. They found that North American red foxes did, indeed, stem from two distinct lineages that diverged from each other while they were isolated in both the southern and northern parts of the continent during the last Ice Age. Moreover, Aubry suspects that montane foxes' smaller size and high-elevation habitat preference is indicative of their being descendants of ancient foxes that had inhabited the southern part of the continent.

With knowledge of the evolutionary history and genetics of the North American red fox, managers can distinguish native from nonnative populations and can clarify genetic relationships among subspecies—knowledge that, in turn, can be used to target conservation efforts to the appropriate gene pool.

To read the April/May 2011 issue of Science Findings online, visit http://www.treesearch.fs.fed.us/pubs/37702.

The PNW Research Station is headquartered in Portland, Oregon. It has 11 laboratories and centers located in Alaska, Oregon, and Washington and about 425 employees.

Yasmeen Sands | EurekAlert!
Further information:
http://www.fs.fed.us

Further reports about: Bronze Age Genetic clues crystalline evolutionary history

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>