Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic study clarifies evolutionary origin of elusive montane red fox

23.05.2011
North American red foxes originated from two separate genetic lineages that were isolated from each other by glaciers some half a million years ago, according to a U.S. Forest Service Pacific Northwest Research Station study.

The research—featured in the April/May 2011 issue of Science Findings, a monthly publication of the station—can assist efforts aimed at conserving potentially imperiled montane populations of the species.

"When most people think of the red fox, they envision the ones that thrive in low-elevation, human-dominated landscapes," said Keith Aubry, a research wildlife biologist at the station who led the study. "But there are other extremely elusive and rarely seen populations that live only in isolated alpine and subalpine areas in the mountains of the Western United States."

The latter group—the montane red foxes—may be imperiled by climate change and other contemporary pressures and were the focus of Aubry's doctoral work in the early 1980s. Contrary to prevailing theory at the time, Aubry hypothesized that native North American red foxes were descended from two distinct lineages, not one, that were isolated from each other in both northern and southern ice-free areas during the most recent Ice Age. Such an evolutionary history would help explain the unique ecological adaptations of the montane foxes, and why native red foxes in southern British Columbia are so much bigger than the montane foxes that occupy nearly adjacent areas in Washington's Cascade Range.

"If all of North America's foxes originated from a single lineage that had expanded its distribution in a wave across the continent, you'd expect to see a more or less continuous gradient in size," Aubry said. "But there was an abrupt discontinuity in size in that area, suggesting that the montane red foxes had evolved in isolation from the northern populations," Aubry said.

Only recently were Aubry and his colleagues able to test this hypothesis through genetic analyses of 285 museum specimens and a close examination of fossil, archeological, historical, and ecological records. They found that North American red foxes did, indeed, stem from two distinct lineages that diverged from each other while they were isolated in both the southern and northern parts of the continent during the last Ice Age. Moreover, Aubry suspects that montane foxes' smaller size and high-elevation habitat preference is indicative of their being descendants of ancient foxes that had inhabited the southern part of the continent.

With knowledge of the evolutionary history and genetics of the North American red fox, managers can distinguish native from nonnative populations and can clarify genetic relationships among subspecies—knowledge that, in turn, can be used to target conservation efforts to the appropriate gene pool.

To read the April/May 2011 issue of Science Findings online, visit http://www.treesearch.fs.fed.us/pubs/37702.

The PNW Research Station is headquartered in Portland, Oregon. It has 11 laboratories and centers located in Alaska, Oregon, and Washington and about 425 employees.

Yasmeen Sands | EurekAlert!
Further information:
http://www.fs.fed.us

Further reports about: Bronze Age Genetic clues crystalline evolutionary history

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>