Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic sleuth solves glaucoma mystery

24.03.2009
Dr. Michael Walter is one good gumshoe. The University of Alberta medical geneticist has cracked the case of WDR36, a gene linked to glaucoma.

Glaucoma is a leading cause of blindness in which cells in the optic nerve die, preventing the brain from understanding what patients see. Scientists have long suspected a link between WDR36 and glaucoma, but have been unable to figure out what the gene does and why some people with variations of the gene get glaucoma while others don't.

Walter unravels this mystery in an article, published in the April 1, 2009 print edition of the journal, Human Molecular Genetics, based in Oxford, England.

Walter and his team investigated a yeast gene that is extremely similar to WDR36 but much easier to experiment with. They introduced the suspected WDR36 variations into the yeast gene and tested its ability to function, and discovered that WDR36 wasn't working alone. The gene variations only affected the yeast when there were simultaneous changes to another gene, called STI1. Walter thinks that STI1 is only one of many other genes in which mutations must take place in order for WDR36 to cause glaucoma.

"Our results suggest that glaucoma is polygenetic, which means there have to be changes in several different genes in order for WDR36 to cause the disease," says Walter, a professor and chair of the Department of Medical Genetics in the Faculty of Medicine & Dentistry.

This explains why only some people who have WDR36 gene variations get glaucoma. This may also lead to further research to uncover the other genetic accomplices. "Only 10 per cent of glaucoma cases are caused by known genes, so the genes involved in this polygenetic interaction may help to explain the other 90 per cent," says Walter, who is also a professor in the Department of Ophthalmology.

In addition, Walter uncovered what WDR36 does in normal function. The gene helps make ribosomes, specialized molecules that make the proteins necessary to keep the cell functioning. Walter suspects that changes to WDR36 will affect ribosome production, and in turn affect the cell's ability to function.

But this mutation alone isn't enough to cause glaucoma. Changes also have to happen to the gene's partner in crime, the STI1 gene, which normally packages the proteins produced by WDR36's ribosomes. Walter says these findings explain the mechanics of glaucoma, how changes in these two genes lead to the illness.

"Glaucoma happens when WDR36 isn't producing ribosomes properly and STI1 isn't packaging those proteins properly – you need at least these two mutations to cause the disease."

Walter says this DNA detective work may have a tangible impact on preventing and treating glaucoma. "Glaucoma is one of the few blinding eye diseases that we can actually treat. But right now we're only treating the symptoms, not the disease."

"If we can understand who gets glaucoma, then we're in a much better place to prevent it, and if we can understand why they get glaucoma, then we have some important clues to use in developing second-generation medications that treat the disease itself."

Lindsay Elleker | EurekAlert!
Further information:
http://www.ualberta.ca
http://www.med.ualberta.ca

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>