Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic risk factors for common eye disorder come into focus

04.03.2013
An international group of investigators has identified seven new genetic regions associated with age-related macular degeneration (AMD), a common cause of blindness in older individuals. The findings, reported online March 3 in Nature Genetics, could point to new biological pathways and therapeutic targets for AMD.
The AMD Gene Consortium, a network of 18 research groups supported by the National Eye Institute, also confirmed 12 genetic loci identified in previous studies. The study represents the most comprehensive genome-wide analysis of genetic variations associated with AMD.

The consortium's efforts have now explained up to 65 percent of the genetics of AMD, said Jonathan Haines, Ph.D., director of the Vanderbilt Center for Human Genetics Research.

In addition to genetic causes, which may account for about half of all cases of AMD, risk factors include age, smoking, high blood pressure, obesity and diet.

"We're getting closer and closer to understanding the full list of risk factors for AMD," said Haines, one of the lead authors of the study and principal investigator of the coordinating center for the consortium.

AMD is a progressive neurodegenerative disease that kills photoreceptor cells in the macula – the region of the retina responsible for sharp, detailed central vision. As AMD advances, it robs individuals of the central vision necessary for everyday activities like reading, driving, watching television and identifying faces. About 2 million people in the United States have advanced AMD, according to the National Eye Institute.

Haines and others discovered the first genetic risk factor for AMD in 2005 – a gene called Complement Factor H, which is involved in inflammatory signaling pathways. Since then, researchers have identified a number of other genetic loci associated with AMD, but the studies usually involved small numbers of individuals.

"It was very clear that if we wanted to make real progress in understanding the genetics of AMD, we needed to pull all of these various datasets together – which is what the AMD Gene Consortium has done," Haines said.

A strength of the AMD Gene Consortium, Haines noted, is the participation of groups from all over the world. The consortium combined existing genome-wide association scans (GWAS) and performed additional genotyping studies. The researchers examined genetic data from more than 17,000 patients with advanced AMD and more than 60,000 people without AMD.

The loci they identified include genes involved in immune system signaling, lipid metabolism, remodeling of the matrix that surrounds cells and blood vessel development. The researchers are continuing to study the genetic regions, Haines said.

"This paper is a global population look at genetic loci, and now we're drilling down to the details and discovering rare variants in genes that may suggest how they participate in causing AMD," Haines said.

The hope, Haines said, is that a full understanding of genetic and environmental risk factors will allow the computation of an AMD risk score. Several companies already offer tests that generate risk scores, but they are based on older information.

"If we can identify the people who are at greatly increased risk for AMD, perhaps we can begin to do clinical trials to test treatments that may prevent the disease," Haines said.

Current treatments for AMD help stabilize the disease, but they do not reverse its course. New treatments based on the genetic findings are in development, Haines said.

Other leaders of the AMD Gene Consortium include Gonçalo Abecasis, D. Phil., University of Michigan, Lindsay Farrer, Ph.D., Boston University, and Iris Heid, Ph.D., University of Regensburg, Germany. The research was supported in part by grants from the National Institutes of Health (EY022310, EY012118).

Leigh MacMillan | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>