Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New genetic research finds shark, human proteins stunningly similar

Despite widespread fascination with sharks, the world’s oldest ocean predators have long been a genetic mystery.

The first deep dive into a great white shark’s genetic code has fished up big surprises behind a design so effective it has barely changed since before dinosaurs roamed.

Cornell researchers have discovered that many of the endangered great white shark’s proteins involved in an array of different functions – including metabolism – match humans more closely than they do zebrafish, the quintessential fish model.

Michael Stanhope, professor of evolutionary genomics at Cornell’s College of Veterinary Medicine, and scientists at the Save Our Seas Shark Research Center at Nova Southeastern University published the study in the November issue of BMC Genomics. It lays the foundation for genomic exploration of sharks and vastly expands genetic tools for their conservation, said Stanhope.

“We were very surprised to find, that for many categories of proteins, sharks share more similarities with humans than zebrafish,” Stanhope said. “Although sharks and bony fishes are not closely related, they are nonetheless both fish … while mammals have very different anatomies and physiologies. Nevertheless, our findings open the possibility that some aspects of white shark metabolism, as well as other aspects of its overall biochemistry, might be more similar to that of a mammal than to that of a bony fish.”

The study launched when Stanhope and Nova Southeastern professor Mahmood Shivji received a Save Our Seas Foundation grant and a rare gift of a great white shark heart. The heart had been autopsied from an illegally fished shark, confiscated by government authorities and donated to their project.

Of particular interest was that white shark had a closer match to humans for proteins involved in metabolism.

“Sharks have many fascinating characteristics,” said Stanhope. “Some give live birth to fully formed young, while some lay eggs. In some species, the embryos eat the remaining eggs or even other embryos while still developing in the uterus. Some can dive very deep, others cannot. Some stay local; others migrate across the entire ocean basins. White sharks dive deep, migrate very long distances and give live birth. We will use what we’ve learned in this species in a broader comparative study of genes involved in these diverse behaviors.”

Because sharks are apex predators, their decreasing number threatens the stability of marine ecosystems, on which millions of people rely for food. This study also increased the number of genetic markers scientist can use to study the population biology of great white and related sharks, Stanhope said, by a thousandfold, from which they hope to further expand knowledge of these fascinating animals, many of which are in urgent need of conservation.

Joe Schwartz | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Generation of a Stable Biradical

22.03.2018 | Life Sciences

Scientists develop a room temperature maser to amplify weak signals

22.03.2018 | Life Sciences

Jacobs University supports new mapping of Mars, Mercury and the Moon

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>