Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic research finds shark, human proteins stunningly similar

06.12.2013
Despite widespread fascination with sharks, the world’s oldest ocean predators have long been a genetic mystery.

The first deep dive into a great white shark’s genetic code has fished up big surprises behind a design so effective it has barely changed since before dinosaurs roamed.

Cornell researchers have discovered that many of the endangered great white shark’s proteins involved in an array of different functions – including metabolism – match humans more closely than they do zebrafish, the quintessential fish model.

Michael Stanhope, professor of evolutionary genomics at Cornell’s College of Veterinary Medicine, and scientists at the Save Our Seas Shark Research Center at Nova Southeastern University published the study in the November issue of BMC Genomics. It lays the foundation for genomic exploration of sharks and vastly expands genetic tools for their conservation, said Stanhope.

“We were very surprised to find, that for many categories of proteins, sharks share more similarities with humans than zebrafish,” Stanhope said. “Although sharks and bony fishes are not closely related, they are nonetheless both fish … while mammals have very different anatomies and physiologies. Nevertheless, our findings open the possibility that some aspects of white shark metabolism, as well as other aspects of its overall biochemistry, might be more similar to that of a mammal than to that of a bony fish.”

The study launched when Stanhope and Nova Southeastern professor Mahmood Shivji received a Save Our Seas Foundation grant and a rare gift of a great white shark heart. The heart had been autopsied from an illegally fished shark, confiscated by government authorities and donated to their project.

Of particular interest was that white shark had a closer match to humans for proteins involved in metabolism.

“Sharks have many fascinating characteristics,” said Stanhope. “Some give live birth to fully formed young, while some lay eggs. In some species, the embryos eat the remaining eggs or even other embryos while still developing in the uterus. Some can dive very deep, others cannot. Some stay local; others migrate across the entire ocean basins. White sharks dive deep, migrate very long distances and give live birth. We will use what we’ve learned in this species in a broader comparative study of genes involved in these diverse behaviors.”

Because sharks are apex predators, their decreasing number threatens the stability of marine ecosystems, on which millions of people rely for food. This study also increased the number of genetic markers scientist can use to study the population biology of great white and related sharks, Stanhope said, by a thousandfold, from which they hope to further expand knowledge of these fascinating animals, many of which are in urgent need of conservation.

Joe Schwartz | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>