Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic regulators hijacked by avian and swine flu viruses identified

29.03.2012
Researchers at the University of British Columbia have identified a number of tiny but powerful "genetic regulators" that are hijacked by avian and swine flu viruses during human infection.

The discovery, published this week in the Journal of Virology, could reveal new targets for broad-spectrum antivirals to combat current – and perhaps future – strains of influenza A viruses.

The study is the first to compare the role played by human microRNAs – small molecules that control the expression of multiple genes – in the life cycle of two viruses of continued concern to public health officials around the world.

"We know that microRNAs are implicated in many types of cancers and other human diseases, but focusing on microRNA signatures in viral infection breaks new ground," says François Jean, Associate Professor in the Department of Microbiology and Immunology and Scientific Director of the Facility for Infectious Disease and Epidemic Research (FINDER) at UBC.

The study discovered two largely distinct sets of microRNAs involved in pandemic (2009) swine-origin H1N1 virus and the highly pathogenic avian-origin H7N7 strain, with only a small subset of microRNAs involved in the regulation of both infections.

"Host-virus interplays are certainly complex, but our discovery points to a new level of cross-communication between viruses and the human cells in which they reproduce," notes Jean. "The finding that a significant number of these microRNAs are transported in microparticles – known as exosomes –involved in intercellular communication is also very exciting. It raises the question as to what role these exosome-associated regulators may play in the onset and spread of the flu virus."

Jean believes that the discovery of the unique microRNA signatures associated with pandemic and deadly flu viruses will assist in developing antiviral treatments that don't run the risk of increasing drug resistance. "Future research on microRNAs could help us develop novel antiviral treatments, adding desperately needed drugs to our current therapeutic repertoire against upcoming flu pandemics."

The research was supported by the Canadian Institutes of Health Research and the Public Health Agency of Canada.

Francois Jean | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>