Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic regulation of metabolomic biomarkers – paths to cardiovascular diseases and type 2 diabetes

30.01.2012
In a study to the genetic variance of human metabolism, researchers have identified thirty one regions of the genome that were associated with levels of circulating metabolites, i.e., small molecules that take part in various chemical reactions of human body.

Many of the studied metabolites are biomarkers for cardiovascular disease or related disorders, thus the loci uncovered may provide valuable insight into the biological processes leading to common diseases.

Laboratory tests used in the clinic typically monitor one or few circulating metabolites. The researchers at the Institute for Molecular Medicine Finland (FIMM) used a high throughput method called nuclear magnetic resonance (NMR) that can measure more than hundred different metabolites in one assay. This provides a much more in-depth picture of circulating metabolic compounds.

"Using this extensive analysis in thousands of people, we could identify a large number of genetic loci regulating the level of compounds circulating in the blood stream", says Dr. Samuli Ripatti, the leader of the study.

The team assayed 117 detailed metabolic markers, including lipoprotein subclasses, amino acids and lipids, and conducted the largest genome-wide association analysis of this type, in terms of study sample size of 8330 individuals from six Finnish population-based cohorts and 7.7 million genomic markers studied. They revealed, in total, 31 genetic regions associated with the blood levels of the metabolites.

Eleven of the loci had not been previously shown to be associated with any metabolic measures.

Among the findings were two new loci affecting serum cholesterol subclass measures, well-established risk markers for cardiovascular disease, and five new loci affecting levels of amino acids recently discovered to be potential biomarkers for type 2 diabetes. The discovered variants have significant effects on the metabolite levels, the effect sizes being in general considerably larger than the known common variants for complex disease have.

Also, using Finnish twin pair samples, the researchers indicated that the metabolite levels show a high degree of heritability. "This result suggests that the studied metabolites are describing better the underlying biology than the routinely used laboratory tests. Therefore, the study provides further support for the use of detailed data on multitude of metabolites in genetic studies to provide novel biological insights and to help in elucidating the processes leading to common diseases", Dr. Ripatti says.

Dr. Samuli Ripatti is a FIMM-EMBL Group Leader at the Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland (http://www.fimm.fi) and a Honorary Faculty Member at the Wellcome Trust Sanger Institute, UK (http://www.sanger.ac.uk)

The Institute for Molecular Medicine Finland FIMM is an international research institute focusing on building a bridge from discovery to medical applications. FIMM investigates molecular mechanisms of disease using genomics and medical systems biology in order to promote human health. FIMM is a multi-disciplinary institute combining high-quality science with unique research cohorts and patient materials, and state-of-the-art technologies. Website http://www.fimm.fi

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. Website http://www.sanger.ac.uk/

Dr. Samuli Ripatti | EurekAlert!
Further information:
http://www.fimm.fi
http://www.sanger.ac.uk/

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>