Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic regulation of metabolomic biomarkers – paths to cardiovascular diseases and type 2 diabetes

30.01.2012
In a study to the genetic variance of human metabolism, researchers have identified thirty one regions of the genome that were associated with levels of circulating metabolites, i.e., small molecules that take part in various chemical reactions of human body.

Many of the studied metabolites are biomarkers for cardiovascular disease or related disorders, thus the loci uncovered may provide valuable insight into the biological processes leading to common diseases.

Laboratory tests used in the clinic typically monitor one or few circulating metabolites. The researchers at the Institute for Molecular Medicine Finland (FIMM) used a high throughput method called nuclear magnetic resonance (NMR) that can measure more than hundred different metabolites in one assay. This provides a much more in-depth picture of circulating metabolic compounds.

"Using this extensive analysis in thousands of people, we could identify a large number of genetic loci regulating the level of compounds circulating in the blood stream", says Dr. Samuli Ripatti, the leader of the study.

The team assayed 117 detailed metabolic markers, including lipoprotein subclasses, amino acids and lipids, and conducted the largest genome-wide association analysis of this type, in terms of study sample size of 8330 individuals from six Finnish population-based cohorts and 7.7 million genomic markers studied. They revealed, in total, 31 genetic regions associated with the blood levels of the metabolites.

Eleven of the loci had not been previously shown to be associated with any metabolic measures.

Among the findings were two new loci affecting serum cholesterol subclass measures, well-established risk markers for cardiovascular disease, and five new loci affecting levels of amino acids recently discovered to be potential biomarkers for type 2 diabetes. The discovered variants have significant effects on the metabolite levels, the effect sizes being in general considerably larger than the known common variants for complex disease have.

Also, using Finnish twin pair samples, the researchers indicated that the metabolite levels show a high degree of heritability. "This result suggests that the studied metabolites are describing better the underlying biology than the routinely used laboratory tests. Therefore, the study provides further support for the use of detailed data on multitude of metabolites in genetic studies to provide novel biological insights and to help in elucidating the processes leading to common diseases", Dr. Ripatti says.

Dr. Samuli Ripatti is a FIMM-EMBL Group Leader at the Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland (http://www.fimm.fi) and a Honorary Faculty Member at the Wellcome Trust Sanger Institute, UK (http://www.sanger.ac.uk)

The Institute for Molecular Medicine Finland FIMM is an international research institute focusing on building a bridge from discovery to medical applications. FIMM investigates molecular mechanisms of disease using genomics and medical systems biology in order to promote human health. FIMM is a multi-disciplinary institute combining high-quality science with unique research cohorts and patient materials, and state-of-the-art technologies. Website http://www.fimm.fi

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. Website http://www.sanger.ac.uk/

Dr. Samuli Ripatti | EurekAlert!
Further information:
http://www.fimm.fi
http://www.sanger.ac.uk/

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>