Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seven new genetic regions linked to type 2 diabetes

10.02.2014
Largest study yet of diabetes genetics brings in data from different ethnic groups

Seven new genetic regions associated with type 2 diabetes have been identified in the largest study to date of the genetic basis of the disease.

DNA data was brought together from more than 48,000 patients and 139,000 healthy controls from four different ethnic groups. The research was conducted by an international consortium of investigators from 20 countries on four continents, co-led by investigators from Oxford University's Wellcome Trust Centre for Human Genetics.

The majority of such 'genome-wide association studies' have been done in populations with European backgrounds. This research is notable for including DNA data from populations of Asian and Hispanic origin as well.

The researchers believe that, as more genetic data increasingly become available from populations of South Asian ancestry and, particularly, African descent, it will be possible to map genes implicated in type 2 diabetes ever more closely.

'One of the striking features of these data is how much of the genetic variation that influences diabetes is shared between major ethnic groups,' says Wellcome Trust Senior Investigator Professor Mark McCarthy from the University of Oxford. 'This has allowed us to combine data from more than 50 studies from across the globe to discover new genetic regions affecting risk of diabetes.'

He adds: 'The overlap in signals between populations of European, Asian and Hispanic origin argues that the risk regions we have found to date do not explain the clear differences in the patterns of diabetes between those groups.'

Among the regions identified by the international research team are two, near the genes ARL15 and RREB1, that also show strong links to elevated levels of insulin and glucose in the body – two key characteristics of type 2 diabetes. This finding provides insights into the ways basic biochemical processes are involved in the risk of type 2 diabetes, the scientists say.

The genome-wide association study looked at more than 3 million DNA variants to identify those that have a measurable impact on risk of type 2 diabetes. By combining DNA data from many tens of thousands of individuals, the consortium was able to detect, for the first time, regions where the effects on diabetes susceptibility are rather subtle.

'Although the genetic effects may be small, each signal tells us something new about the biology of the disease,' says first author Dr Anubha Mahajan of Oxford University. 'These findings may lead us to new ways of thinking about the disease, with the aim ultimately of developing novel therapies to treat and prevent diabetes. There's every reason to expect that drugs acting on these biological processes would have a far larger impact on an individual's diabetes than the genetic effects we have discovered.'

Principal investigator Dr Andrew Morris, also of the Wellcome Trust Centre for Human Genetics at Oxford University, says: 'The findings of our study should also be relevant to other common human diseases. By combining genetic data from different ethnic groups, we would expect also to be able identify new DNA variants influencing risk of heart disease and some forms of cancer, for example, which are shared across ethnic groups. It has the potential to have a major impact on global public health.'

The study is published in the journal Nature Genetics. Funding came from multiple sources, including the Wellcome Trust, the Medical Research Council, the US National Institutes of Health and the Canadian Institutes of Health Research.

Notes to Editors

The paper 'Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility' is to be published in the journal Nature Genetics with an embargo of 18:00 UK time / 13:00 US Eastern time on Sunday 9 February 2013.

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests. http://www.wellcome.ac.uk

Oxford University's Medical Sciences Division is one of the largest biomedical research centres in Europe, with over 2,500 people involved in research and more than 2,800 students. The University is rated the best in the world for medicine, and it is home to the UK's top-ranked medical school.

From the genetic and molecular basis of disease to the latest advances in neuroscience, Oxford is at the forefront of medical research. It has one of the largest clinical trial portfolios in the UK and great expertise in taking discoveries from the lab into the clinic. Partnerships with the local NHS Trusts enable patients to benefit from close links between medical research and healthcare delivery.

A great strength of Oxford medicine is its long-standing network of clinical research units in Asia and Africa, enabling world-leading research on the most pressing global health challenges such as malaria, TB, HIV/AIDS and flu. Oxford is also renowned for its large-scale studies which examine the role of factors such as smoking, alcohol and diet on cancer, heart disease and other conditions.

News & Information Office | EurekAlert!
Further information:
http://www.ox.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>