Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Seven new genetic regions linked to type 2 diabetes

Largest study yet of diabetes genetics brings in data from different ethnic groups

Seven new genetic regions associated with type 2 diabetes have been identified in the largest study to date of the genetic basis of the disease.

DNA data was brought together from more than 48,000 patients and 139,000 healthy controls from four different ethnic groups. The research was conducted by an international consortium of investigators from 20 countries on four continents, co-led by investigators from Oxford University's Wellcome Trust Centre for Human Genetics.

The majority of such 'genome-wide association studies' have been done in populations with European backgrounds. This research is notable for including DNA data from populations of Asian and Hispanic origin as well.

The researchers believe that, as more genetic data increasingly become available from populations of South Asian ancestry and, particularly, African descent, it will be possible to map genes implicated in type 2 diabetes ever more closely.

'One of the striking features of these data is how much of the genetic variation that influences diabetes is shared between major ethnic groups,' says Wellcome Trust Senior Investigator Professor Mark McCarthy from the University of Oxford. 'This has allowed us to combine data from more than 50 studies from across the globe to discover new genetic regions affecting risk of diabetes.'

He adds: 'The overlap in signals between populations of European, Asian and Hispanic origin argues that the risk regions we have found to date do not explain the clear differences in the patterns of diabetes between those groups.'

Among the regions identified by the international research team are two, near the genes ARL15 and RREB1, that also show strong links to elevated levels of insulin and glucose in the body – two key characteristics of type 2 diabetes. This finding provides insights into the ways basic biochemical processes are involved in the risk of type 2 diabetes, the scientists say.

The genome-wide association study looked at more than 3 million DNA variants to identify those that have a measurable impact on risk of type 2 diabetes. By combining DNA data from many tens of thousands of individuals, the consortium was able to detect, for the first time, regions where the effects on diabetes susceptibility are rather subtle.

'Although the genetic effects may be small, each signal tells us something new about the biology of the disease,' says first author Dr Anubha Mahajan of Oxford University. 'These findings may lead us to new ways of thinking about the disease, with the aim ultimately of developing novel therapies to treat and prevent diabetes. There's every reason to expect that drugs acting on these biological processes would have a far larger impact on an individual's diabetes than the genetic effects we have discovered.'

Principal investigator Dr Andrew Morris, also of the Wellcome Trust Centre for Human Genetics at Oxford University, says: 'The findings of our study should also be relevant to other common human diseases. By combining genetic data from different ethnic groups, we would expect also to be able identify new DNA variants influencing risk of heart disease and some forms of cancer, for example, which are shared across ethnic groups. It has the potential to have a major impact on global public health.'

The study is published in the journal Nature Genetics. Funding came from multiple sources, including the Wellcome Trust, the Medical Research Council, the US National Institutes of Health and the Canadian Institutes of Health Research.

Notes to Editors

The paper 'Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility' is to be published in the journal Nature Genetics with an embargo of 18:00 UK time / 13:00 US Eastern time on Sunday 9 February 2013.

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests.

Oxford University's Medical Sciences Division is one of the largest biomedical research centres in Europe, with over 2,500 people involved in research and more than 2,800 students. The University is rated the best in the world for medicine, and it is home to the UK's top-ranked medical school.

From the genetic and molecular basis of disease to the latest advances in neuroscience, Oxford is at the forefront of medical research. It has one of the largest clinical trial portfolios in the UK and great expertise in taking discoveries from the lab into the clinic. Partnerships with the local NHS Trusts enable patients to benefit from close links between medical research and healthcare delivery.

A great strength of Oxford medicine is its long-standing network of clinical research units in Asia and Africa, enabling world-leading research on the most pressing global health challenges such as malaria, TB, HIV/AIDS and flu. Oxford is also renowned for its large-scale studies which examine the role of factors such as smoking, alcohol and diet on cancer, heart disease and other conditions.

News & Information Office | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>