Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic cause of pulmonary hypertension identified

25.07.2013
Study finds druggable target for rare fatal lung disease

Columbia University Medical Center (CUMC) scientists have identified new genetic mutations that can cause pulmonary arterial hypertension (PAH), a rare fatal disease characterized by high blood pressure in the lungs.


This is a cross section of a potassium channel in a smooth muscle cell of the pulmonary artery. A study by Dr. Wendy Chung has identified six new mutations in a gene called KCNK3 that can interfere with the function of potassium channels and lead to pulmonary hypertension. The mutations are depicted in color at the locations where they exert their effects.

Credit: Columbia University Medical Center

The mutations, found in the gene KCNK3, appear to affect potassium channels in the pulmonary artery, a mechanism not previously linked to the condition. Cell culture studies showed that the mutations' effects could be reversed with a drug compound known as a phospholipase inhibitor. The study was published today in the online edition of the New England Journal of Medicine.

"The most exciting thing about our study is not that we've identified a new gene involved in pulmonary hypertension, but that we've found a drug that can 'rescue' some mutations," said co-senior author Wendy K. Chung, MD, PhD, associate professor of pediatrics and medicine at CUMC. "In genetics, it's common to identify a gene that is the source of a disease. However, it's relatively rare to find potential treatments for genetic diseases."

PAH is a progressive disorder characterized by abnormally high blood pressure in the pulmonary artery, which reduces blood flow from the right side of the heart to the lungs. The heart can compensate by pumping harder, but over time this can weaken the heart muscle and lead to right-sided heart failure. Common symptoms of PAH include shortness of breath, dizziness, and fainting. About 1,000 new cases are diagnosed in the United States each year. The disorder is twice as common in females as in males. There is no cure for PAH and few effective treatments. Most patients with PAH die within 5–7 years of diagnosis.

Some cases of PAH are caused by inherited genetic defects. Most of these "familial" cases have been linked to mutations in a gene called BMPR2 (bone morphogenetic protein receptor, type II), which was identified simultaneously in 2000 by two independent research teams, one led by the late Robin Barst and Jane Morse, CUMC researchers. However, the majority of cases are idiopathic in origin (of unknown cause). Other forms of PAH can be triggered by autoimmune diseases, congenital heart defects, infections (such as schistosomiasis), and medications (such as the now-banned diet-drug combination commonly known as fen-Phen).

Dr. Chung and her colleagues discovered the new mutations by sequencing the exomes (the portion of the genome that codes information to make proteins) of families with PAH without identified mutations. KCNK3 mutations were found in 3.2 percent of those with familial disease and in 1.3 percent of those with idiopathic PAH.

The team found that the mutations alter the function of potassium channels by reducing the activity of these channels. Potassium channels help maintain the vascular tone of the pulmonary artery and help it respond to low levels of oxygen.

"We were surprised to learn that KCNK3 appears to play a role in the function of potassium channels in the pulmonary artery," said Dr. Chung. "No one had suspected that this mechanism might be associated with PAH." The other gene linked to the disorder, BMPR2, is thought to cause PAH by ultimately promoting growth and multiplication of smooth muscle cells in the pulmonary artery, thereby restricting blood flow.

Dr. Chung also found, working in collaboration with co-senior author, Robert S. Kass, PhD, the Alumni and David Hosack Professor of Pharmacology, chair of the department, and vice dean for research at CUMC, that the effects of the KCNK3 mutations could be reversed with an experimental phospholipase inhibitor called ONO-RS-082. The findings were made in cell cultures. Further study is needed to determine whether treatment with this or other drugs that affect potassium channels might be useful in the treatment of people with PAH, said Dr. Chung.

"KCNK3 mutations are a rare cause of PAH, so I don't want to oversell our findings," said Dr. Chung. "Still, it's exciting that we've found a mechanism that can lead to the disease that is a new, druggable target. It's also possible that targeting KCNK3 may be beneficial for patients who have PAH independent of their KCNK3 genetic status."

The paper is titled, "A Novel Channelopathy in Pulmonary Arterial Hypertension." The other contributors are: Lijiang Ma, Danilo Roman-Campos, Eric D, Mélanie Eyries, Kevin Sampson, Florent Soubrier, Marine Germain, David-Alexandre Trégouët, Alain Borczuk, Erika Berman Rosenzweig, Barbara Girerd, David Montani, Marc Humbert, and James E. Loyd.

The authors declare no financial or other conflicts of interests.

The study was supported by grants from the National Institutes of Health (R01 HL060056, P01 HL072058, K23 HL098743, and R01 HL56810) and by a Vanderbilt Clinical and Translational Science Awards (UL1 RR024975) from the National Center for Research Resources.

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org.

Karin Eskenazi | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>