Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Predisposition to Liking Amphetamine Reduces Risk of Schizophrenia and ADHD

08.04.2014

Genetic variants associated with enjoying the effects of d-amphetamine—the active ingredient in Adderall—are also associated with a reduced risk for developing schizophrenia and attention deficit hyperactivity disorder (ADHD), report scientists from the University of Chicago in the Proceedings of the National Academy of Sciences on April 7. The results support a long-standing hypothesis that dopamine, the neurotransmitter connected with the euphoric effects of amphetamine, is related to schizophrenia and ADHD.

“Some of the variants that make you like amphetamine also appear to make you less likely to develop schizophrenia and ADHD,” said study leader Abraham Palmer, PhD, associate professor of human genetics at the University of Chicago. “Our study provides new insights into the biology of amphetamine and how it relates to the biology of risk for these psychiatric diseases.”

Palmer and his team previously conducted a genome-wide association study (GWAS) to identify genetic variants associated with experiencing the euphoric effects of amphetamine, which is thought to affect risk for drug abuse. Almost 400 volunteers were given d-amphetamine in a double-blind, placebo-controlled experiment.

They were then asked to report how the drug made them feel using carefully designed questionnaires. The researchers measured genetic differences between these subjects at approximately a million sites throughout the genome to identify variations in the DNA code known as single nucleotide polymorphisms, or SNPs. They assessed the relationships between each of these SNPs and sensitivity to amphetamine.

Using data from other large-scale GWAS studies, the team examined these same SNPs for possible overlapping associations with psychiatric disorders. Through rigorous statistical testing they found that an unexpectedly large number of SNPs were associated with both sensitivity to amphetamine and risk of developing schizophrenia or ADHD. This suggested that these traits are influenced by a common set of genetic variants.
Moreover, a significant proportion of this observed overlap appeared to be caused by variants that increased enjoyment of the effects of amphetamine but decreased the risk for both psychiatric diseases.

The researchers performed similar analyses for traits that were not expected to be related to amphetamine sensitivity, such as height, irritable bowel disease and Parkinson’s disease. In all of these cases they observed no more overlapping SNPs than would have been expected by chance alone.

“While this approach would not be a useful diagnostic test, we expect that people who like the effects of amphetamine would be slightly less likely to develop schizophrenia and ADHD,” Palmer said. “And people who did not like amphetamine, we would predict, are slightly more likely to develop these diseases.”

“What is particularly striking is that by examining people’s responses for just a few hours after taking a drug, we can identify an underlying genetic propensity that can manifest as a psychiatric disease over the course of a lifetime,” he adds.

These results provide unique genetic evidence for the role of dopamine in schizophrenia and ADHD. Schizophrenia is commonly treated using drugs that block dopamine signaling, while ADHD is treated using drugs, including d-amphetamine itself, that enhance dopamine signaling. Despite opposite treatments, amphetamine-liking SNPs reduced the risk for developing both diseases, suggesting that dopamine’s role is more complex than hypothesized.

The study also offers a new direction for the analysis of a wide range of similar genetic studies, particularly ones with smaller sample sizes. By analyzing the results of those studies for overlap with data from much larger genetic studies, promising genetic variants that would otherwise never stand out among the noise of hundreds of thousands of other random variants can be identified.

“Our approach offers a promising new direction for studying complex psychiatric behaviors using the whole-genome approach,” said co-author Harriet de Wit, PhD, professor of psychiatry and behavioral neuroscience at the University of Chicago.
The team plans to further study the SNPs identified in this study for their functional roles in amphetamine liking, schizophrenia and ADHD. In addition, Palmer hopes to explore genetic predispositions toward liking or disliking other therapeutic drugs and whether sensitivity to those drugs might also overlap with the diseases for which these drugs are used.

“When we use a drug treatment, we know exactly what systems have been perturbed,” Palmer said. “So when we see overlap for alleles that affect how you respond to drugs and a disease, we can hone in on what those alleles are doing biologically. This is instrumental for translating those results into new treatments and cures, which is the ultimate reason for performing genetic studies of disease.”

The study, “Genetic variation associated with euphorigenic effects of d-amphetamine is associated with diminished risk for schizophrenia and attention deficit hyperactivity disorder,” was supported by the National Institutes of Health. Additional authors include Amy B. Hart, Eric R. Gamazon, Barbara E. Engelhardt, Pamela Sklar, Anna K. Kähler, Christina M. Hultman, Patrick F. Sullivan, Benjamin M. Neale, Stephen V. Faraone, Psychiatric Genomics Consortium: ADHD Subgroup and Nancy J. Cox.

Kevin Jiang | newswise
Further information:
http://www.uchospitals.edu

Further reports about: ADHD Amphetamine Genetic Risk SNPs develop diseases dopamine drugs schizophrenia sensitivity variants

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>