Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Predisposition to Liking Amphetamine Reduces Risk of Schizophrenia and ADHD

08.04.2014

Genetic variants associated with enjoying the effects of d-amphetamine—the active ingredient in Adderall—are also associated with a reduced risk for developing schizophrenia and attention deficit hyperactivity disorder (ADHD), report scientists from the University of Chicago in the Proceedings of the National Academy of Sciences on April 7. The results support a long-standing hypothesis that dopamine, the neurotransmitter connected with the euphoric effects of amphetamine, is related to schizophrenia and ADHD.

“Some of the variants that make you like amphetamine also appear to make you less likely to develop schizophrenia and ADHD,” said study leader Abraham Palmer, PhD, associate professor of human genetics at the University of Chicago. “Our study provides new insights into the biology of amphetamine and how it relates to the biology of risk for these psychiatric diseases.”

Palmer and his team previously conducted a genome-wide association study (GWAS) to identify genetic variants associated with experiencing the euphoric effects of amphetamine, which is thought to affect risk for drug abuse. Almost 400 volunteers were given d-amphetamine in a double-blind, placebo-controlled experiment.

They were then asked to report how the drug made them feel using carefully designed questionnaires. The researchers measured genetic differences between these subjects at approximately a million sites throughout the genome to identify variations in the DNA code known as single nucleotide polymorphisms, or SNPs. They assessed the relationships between each of these SNPs and sensitivity to amphetamine.

Using data from other large-scale GWAS studies, the team examined these same SNPs for possible overlapping associations with psychiatric disorders. Through rigorous statistical testing they found that an unexpectedly large number of SNPs were associated with both sensitivity to amphetamine and risk of developing schizophrenia or ADHD. This suggested that these traits are influenced by a common set of genetic variants.
Moreover, a significant proportion of this observed overlap appeared to be caused by variants that increased enjoyment of the effects of amphetamine but decreased the risk for both psychiatric diseases.

The researchers performed similar analyses for traits that were not expected to be related to amphetamine sensitivity, such as height, irritable bowel disease and Parkinson’s disease. In all of these cases they observed no more overlapping SNPs than would have been expected by chance alone.

“While this approach would not be a useful diagnostic test, we expect that people who like the effects of amphetamine would be slightly less likely to develop schizophrenia and ADHD,” Palmer said. “And people who did not like amphetamine, we would predict, are slightly more likely to develop these diseases.”

“What is particularly striking is that by examining people’s responses for just a few hours after taking a drug, we can identify an underlying genetic propensity that can manifest as a psychiatric disease over the course of a lifetime,” he adds.

These results provide unique genetic evidence for the role of dopamine in schizophrenia and ADHD. Schizophrenia is commonly treated using drugs that block dopamine signaling, while ADHD is treated using drugs, including d-amphetamine itself, that enhance dopamine signaling. Despite opposite treatments, amphetamine-liking SNPs reduced the risk for developing both diseases, suggesting that dopamine’s role is more complex than hypothesized.

The study also offers a new direction for the analysis of a wide range of similar genetic studies, particularly ones with smaller sample sizes. By analyzing the results of those studies for overlap with data from much larger genetic studies, promising genetic variants that would otherwise never stand out among the noise of hundreds of thousands of other random variants can be identified.

“Our approach offers a promising new direction for studying complex psychiatric behaviors using the whole-genome approach,” said co-author Harriet de Wit, PhD, professor of psychiatry and behavioral neuroscience at the University of Chicago.
The team plans to further study the SNPs identified in this study for their functional roles in amphetamine liking, schizophrenia and ADHD. In addition, Palmer hopes to explore genetic predispositions toward liking or disliking other therapeutic drugs and whether sensitivity to those drugs might also overlap with the diseases for which these drugs are used.

“When we use a drug treatment, we know exactly what systems have been perturbed,” Palmer said. “So when we see overlap for alleles that affect how you respond to drugs and a disease, we can hone in on what those alleles are doing biologically. This is instrumental for translating those results into new treatments and cures, which is the ultimate reason for performing genetic studies of disease.”

The study, “Genetic variation associated with euphorigenic effects of d-amphetamine is associated with diminished risk for schizophrenia and attention deficit hyperactivity disorder,” was supported by the National Institutes of Health. Additional authors include Amy B. Hart, Eric R. Gamazon, Barbara E. Engelhardt, Pamela Sklar, Anna K. Kähler, Christina M. Hultman, Patrick F. Sullivan, Benjamin M. Neale, Stephen V. Faraone, Psychiatric Genomics Consortium: ADHD Subgroup and Nancy J. Cox.

Kevin Jiang | newswise
Further information:
http://www.uchospitals.edu

Further reports about: ADHD Amphetamine Genetic Risk SNPs develop diseases dopamine drugs schizophrenia sensitivity variants

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>