Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic mutations warn of skin cancer risk

31.03.2014

New high-risk cancer causing mutation identified for melanoma development

Researchers have discovered that mutations in a specific gene are responsible for a hereditary form of melanoma.

Every year in the UK, almost 12,000 people are diagnosed with melanoma, a form of skin cancer. About 1 in 20 people with melanoma have a strong family history of the disease. In these patients, pinpointing the genetic mutations that drive disease development allows dermatologists to identify people who should be part of melanoma surveillance programmes.

The team found that people with specific mutations in the POT1 gene were extremely likely to develop melanoma. These mutations deactivate the POT1 gene that protects the ends of our chromosomes from damage.

"Genomics is on the verge of transforming the healthcare system – this study highlights the potential clinical benefits that can be gained through genomic studies and offers potential strategies to improve patient care and disease management," says Dr David Adams, co-senior author from the Wellcome Trust Sanger Institute. "With this discovery we should be able to determine who in a family is at risk, and in turn, who should be regularly screened for early detection."

Known genetic mutations account for approximately 40 per cent of all occurrences of inherited forms of melanoma. The team set out to identify the hereditary mutations that account for the other ~60 per cent by sequencing part of the genome of 184 patients with hereditary melanoma caused by unknown mutations.

They found that the inactivation of POT1 caused by these mutations leads to longer and potentially unprotected telomeres, regions at the end of our chromosomes that protect chromosomes from damage.

"This finding significantly increases our understanding of why some families have a high incidence of melanoma," says Professor Tim Bishop, Director of the Leeds Institute of Cancer and Pathology. "Since this gene has previously been identified as a target for the development of new drugs, in the future, it may be possible that early detection will facilitate better management of this disease."

The team also found that there were also cases of other cancer types in families with these hereditary mutations such as leukaemias and brain tumours. It seems that mutations that deactivate the POT1 gene may underlie other cancers, not just melanoma.

"Our research is making a real difference to understanding what causes melanoma and ultimately therefore how to prevent and treat melanoma and is a prime example of how genomics can transform public health," says Professor Julia Newton Bishop, co-senior author from the University of Leeds. "This study would not have been possible without the help and patience from the families that suffer from these devastating, inherited forms of melanoma."

The team are currently working on developing cells and mice with an inactive POT1 gene. These will be used to test potential drug therapies that alter telomere metabolism.

Dr Safia Danovi, Cancer Research UK's senior science communications officer, said: "This is a step forward for people with a strong family history of melanoma, the most dangerous form of skin cancer. But it's important to remember that, for most of us, avoiding sunburn and sunbeds is the best way to reduce the risk of this disease."

###

For further information about Cancer Research UK's work or to find out how to support the charity, please call 0300 123 1022 or visit http://www.cancerresearchuk.org.

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests. http://www.wellcome.ac.uk

Contact details

Don Powell
Media Manager
Wellcome Trust Sanger Institute
Hinxton, Cambridge, CB10 1SA, UK
Tel +44 (0)1223 496 928
Mobile +44 (0)7753 7753 97
Email press.office@sanger.ac.uk

Aileen Sheehy | EurekAlert!

Further reports about: Cambridge Cancer Epidemiology Genetic Laboratory hereditary melanoma mutations skin

More articles from Life Sciences:

nachricht Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools
30.06.2016 | Rice University

nachricht A protein coat helps chromosomes keep their distance
30.06.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>