Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic mutations linked to Parkinson's disease

Researchers have discovered how genetic mutations linked to Parkinson's disease might play a key role in the death of brain cells, potentially paving the way for the development of more effective drug treatments.

In the new study, published in Nature Neuroscience, a team of researchers from UCL, the University of Cambridge and the University of Sheffield showed how defects in the Parkinson's gene Fbxo7 cause problems with 'mitaphagy' – an essential process through which our bodies are able to get rid of damaged cells.

Mitochondria are the 'energy powerhouses' of cells. Their function is vital in nerve cells which require a great deal of energy in order to function and survive. Dysfunctional mitochondria are potentially very harmful and, normally, cells dispose of the damaged mitchondria by self-eating them, a process called mitophagy.

Most of what we know about the mitophagy process comes from the study of the familial forms of Parkinson's, one of the most common diseases of the brain. Over the last three years, two genes associated with familial Parkinson's disease, PINK1 and Parkin, have been reported to play a role in mitophagy.

This new study shows just how central the role of mitophagy is and how mutations in Fbxo7 are also linked with the disease and interfere with the PINK1-Parkin pathway. In people with Parkinson's, genetic mutations cause defects in mitophagy, leading to a build-up of dysfunctional mitochondria. This is likely to explain, at least partially, the death of brain cells in Parkinson's patients with these mutations.

One of the lead authors, Dr Helene Plun-Favreau from the UCL Institute of Neurology, said: "These findings suggest that treatment strategies that target mitophagy might be developed to benefit patients with Parkinson's disease in the future."

Dr Plun-Favreau, who was recently awarded a grant from the National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, said: "What makes the study so robust is the confirmation of defective mitophagy in a number of different Parkinson's models, including cells of patients who carry a mutation in the Fbxo7 gene."

Co-author Dr Heike Laman, University of Cambridge, said: "This research focuses the attention of the PD community on the importance of the proper maintenance of mitochondria for the health of neurons. We are really only at the very beginning of this work, but perhaps we can use this information to enable earlier diagnosis for Parkinson's disease patients or design therapies aimed at supporting mitochondrial health."

Professor Nicholas Wood, Neuroscience programme director for the NIHR University College London Hospitals BRC, said: "It is very exciting to see how detailed biological work of this type can highlight a single pathway that contributes to Parkinson's disease. This presents the opportunity of more rationale drug design for many forms of parkinsonism."

Professor Hugh Perry, chair of the Neurosciences and Mental Health Board at the Medical Research Council who part-funded the study, said: "This study raises interesting questions about precisely how brain cells die in a Parkinson's patient: the process which is key to understanding the disease's progression. The more we understand about the basic molecular events which contribute to the onset and progression of Parkinson's disease, the better placed we will be to develop treatments to stop it in its tracks."

The work was funded by the Medical Research Council, the Wellcome Trust and The NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust and University College London.

Notes to editors

For more information, contact David Weston in the UCL Press Office on +44 (0) 203 108 3844 (out of hours 07917 271 364) or

1. The paper, entitled 'The Parkinson's disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy' by Plun-Favreau et al, is published in Nature Neuroscience.

About the Medical Research Council:

Over the past century, the Medical Research Council has been at the forefront of scientific discovery to improve human health. Founded in 1913 to tackle tuberculosis, the MRC now invests taxpayers' money in some of the best medical research in the world across every area of health. Twenty-nine MRC-funded researchers have won Nobel prizes in a wide range of disciplines, and MRC scientists have been behind such diverse discoveries as vitamins, the structure of DNA and the link between smoking and cancer, as well as achievements such as pioneering the use of randomised controlled trials, the invention of MRI scanning, and the development of a group of antibodies used in the making of some of the most successful drugs ever developed.

Today, MRC-funded scientists tackle some of the greatest health problems facing humanity in the 21st century, from the rising tide of chronic diseases associated with ageing to the threats posed by rapidly mutating micro-organisms. The MRC Centenary Timeline chronicles 100 years of life-changing discoveries and shows how our research has had a lasting influence on healthcare and wellbeing in the UK and globally, right up to the present day.

About the Wellcome Trust

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests.

The NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust and University College London was established in 2007 and is at the forefront of research into some of the major causes of illness and disease-related death. The biomedical research centre (BRC), which has invested over £100m in new experimental medicine research projects, staff, equipment and facilities, was last year awarded a further £98million in government funding from the National Institute for Health Research. The BRC focuses on a range of advances in medical research that will have a direct impact on patients' care and quality of life, and will also save many lives. These include advances in the areas of cancer, cardiovascular disease, infectious disease, women's health, oral health and neurological diseases such as epilepsy, stroke and multiple sclerosis.

About UCL (University College London)

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender and the first to provide systematic teaching of law, architecture and medicine. We are among the world's top universities, as reflected by our performance in a range of international rankings and tables. According to the Thomson Scientific Citation Index, UCL is the second most highly cited European university and the 15th most highly cited in the world. UCL has nearly 27,000 students from 150 countries and more than 9,000 employees, of whom one third are from outside the UK. The university is based in Bloomsbury in the heart of London, but also has two international campuses – UCL Australia and UCL Qatar. Our annual income is more than £800 million.

David Weston | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>