Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic mutations identified that suggest link between type 1 diabetes and common viral infection

09.03.2009
The rare genetic mutations also reduce the risk of developing the disease

Scientists from Cambridge University have discovered four rare mutations of a gene associated with type 1 diabetes (T1D) that reduce the risk of developing the disease. Their findings, published today in the journal Science Express, suggest a link between T1D and the enterovirus (a common virus that enters via the gastrointestinal tract but is often non-symptomatic).

Everyone carries the IFIH1 gene, which plays a role in the body's antiviral responses. Importantly, it is also located in the region of the human genome associated with T1D, an autoimmune disorder which results in the body attacking its own insulin-producing pancreatic cells. The IFIH1 gene codes for a protein that recognizes the presence of viruses in the cell and controls immune activation. It is within this gene that scientists have identified four gene variants that protect against T1D.

Enteroviruses are well known to be associated with T1D: enterovirus infections are more common among newly diagnosed T1D patients and pre-diabetic subjects than in the general population and often precede the appearance of biological markers for pre-diabetes. However, no one knows if these infections are a cause of type 1 diabetes.

The study by Nejentsev et al., which was conducted at the Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, establishes that the IFIH1 protein is involved in T1D, highlighting a molecular pathway by which enterovirus infections may contribute to the development of the disease. The four rare variants they identified, which are predicted to reduce function of the IFIH1 protein, consistently decrease the risk of T1D, rather than predispose to it. This suggests a model where normal immune activation caused by enterovirus infection and mediated by IFIH1 protein stimulates autoimmunity that eventually leads to T1D.

Professor John Todd, senior author on the study, said: "We have been able to pin-point one particular gene among a long list of candidates. Now we and others can begin to study the biology of IFIH1 in the context of type 1 diabetes knowing that it is part of the cause of the disease."

In the past three years genome-wide association studies have been a major success, revealing dozens of regions in the human genome that harbour genes which predispose individuals to various diseases, such as diabetes or cancers. Nevertheless, as disease-associated regions may contain several genes with different functions, scientists rarely know which gene or gene variant (mutations of the gene) in these regions cause the disease.

In order to overcome this limitation, the scientists searched for variants that had obvious biological effects, e.g. those affecting gene expression or protein function. They hypothesized that if a gene harbors several such variants, then it is likely to be causative. Most of such variants are rare in the population and are not tested in genome-wide association studies. Nevertheless, they could be discovered by sequencing (examining the sequence of the pairs of nucleotides which make up a gene).

The researchers studied 10 candidate genes associated with T1D. Using a novel technique (high throughput sequencing of DNA pools) in collaboration with 454 Life Sciences, a Roche company, they examined the DNA of 480 T1D patients and 480 healthy controls. This approach allowed them to not only discover several rare variants associated with T1D, but also to accurately measure their frequency in the pools of patients and controls.

The researchers then genotyped approximately 30,000 individuals who were either T1D patients, controls or family members and proved that four rare variants or versions that reside in the gene IFIH1 reduce the risk of developing T1D.

The study demonstrates that re-sequencing genes associated with diseases can help pinpoint the specific gene or genes that lead to the disease.

"Finding several new rare disease variants with clear biological functions was crucial. Not only has this proved that IFIH1 is involved in type 1 diabetes, it also gave us clues to understand the mechanism" said Dr. Sergey Nejentsev, Royal Society Research Fellow at the Department of Medicine, the first author of the study. He added: "This experiment shows the way to identify causative genes contributing to various common diseases."

Genevieve Maul | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>