Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First genetic mutation linked to heart failure in pregnant women

22.06.2011
Medical Center Research Team Finds First Genetic Mutation Linked to Heart Failure in Pregnant Women

Researchers at the Intermountain Medical Center Heart Institute have identified the first genetic mutation ever associated with a mysterious and potentially devastating form of heart disease that affects women in the final weeks of pregnancy or the first few months after delivery.

The disease, peripartum cardiomyopathy (PPCM), weakens a woman’s heart so that it no longer pumps blood efficiently. The disease is relatively rare, affecting about one in 3,000 to 4,000 previously healthy American women. Most PPCM patients are treated with medicine, but about 10 percent require a heart transplant or mechanical heart-assist device to survive. The cause of PPCM has been unknown.

“This is an important breakthrough,” said Benjamin Horne, PhD, director of cardiovascular and genetic epidemiology at Intermountain Medical Center and lead researcher for the study, which has just been published in the online edition of Circulation: Cardiovascular Genetics and will soon appear in the print edition of the journal.

“Until now, no one has identified a genetic link to the disease. This gives us and other researchers a roadmap that tells us where to look in the human genome for more information about the disease,” said Dr. Horne. “Someday this may lead to early testing during pregnancy that can identify women who are at risk for peripartum cardiomyopathy. We may be able to reduce or even prevent some of the complications of this disease.”

The research team gathered DNA samples at Intermountain Medical Center from 41 women in their 20s and 30s who had suffered from PPCM. They also took samples from 49 women who were over age 75 and had never experienced cardiac problems. The samples were sent for testing to a lab in Iceland, which used a special credit-card size device covered with 550,000 tiny dots of protein that, when mixed with human DNA, can isolate genetic mutations.

“The initial testing was a fishing expedition,” said Dr. Horne. “We didn’t know what genes or mutations in the human genome lead to PPCM, so we were just going to test anything out there and see what popped up,” he said.

To the group’s surprise, the testing found that about two-thirds of the women with PPCM shared a genetic mutation on chromosome 12. So they performed a second round of testing in a different set of patients — again, one group of women with PPCM and a control group of older women who had never experienced heart problems. This time, a second control group of younger women was also evaluated. The results of the second round mirrored the first. So they did it again with a third healthy group of women.

In the end, all three sets of tests confirmed their first finding: Women with PPCM in the study were about two-and-a-half times more likely than healthy women to carry the genetic mutation. In the world of medicine and genetics, that’s a significant finding, said Dr. Horne.

“It turns out that the mutation on chromosome 12 is located near a gene that is a good candidate for pregnancy-related cardiomyopathy,” said Dr. Horne. “That gene has been shown to be involved in regulating blood pressure and muscle contraction in the uterus and the heart.”

The research group from Intermountain Medical Center is already moving forward with new studies that aim to build on this discovery and help women who develop this devastating condition.

Other lead researchers on the project included cardiologists Abdallah Kfoury, MD, and Rami Alharethi MD, and nurse practitioner Kismet Rasmusson, all from Intermountain Medical Center. Almost 20 researchers were involved, primarily from Intermountain’s Heart Institute but also from Intermountain’s Maternal Fetal Medicine program, the University of Utah, and the VA Hospital.

This study was supported in part by grants from the R. Harold Burton Foundation and the Deseret Foundation.

Bryan Packer | EurekAlert!
Further information:
http://intermountainhealthcare.org

Further reports about: DNA Heart Medical Wellness genetic mutation human genome

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>