Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic markings could spot cancer before it develops

01.10.2013
New research has found unique DNA markings on certain genes may 'predict' the risk of developing head and neck cancer

Unique DNA markings on certain genes may "predict" the risk of developing head and neck cancer, according to new research led by Queen Mary University of London.

The findings, published today in the journal Cancer, raise the potential for the development of non-invasive tests which could pick up these tell-tale signs of early cancer initiation.

Head and neck cancers are cancers that develop anywhere in the head and neck, including mouth cancer and throat cancer. About 16,000 people in the UK are diagnosed with head and neck cancer every year*.

In this study scientists analysed clinical specimens of malignant tissue from 93 cancer patients from Norway and the UK. These were compared with either tissue donated by healthy individuals undergoing wisdom tooth extractions, or with non-cancerous tissue from the same patients.

They were trying to identify whether there were any epigenetic changes in the cancerous cells which were not seen in the healthy cells. Epigenetics is the study of changes in gene expression caused by mechanisms other than changes in the underlying DNA sequence.

Not all genes are active all the time and there are many ways that gene expression is controlled. DNA methylation marks act as 'switches', either turning genes on or off. Abnormal DNA methylation is known to precede cancer initiation.

Lead researcher Dr Muy Teck-Teh, from the Institute of Dentistry at Queen Mary, said: "In this study we have identified four genes which were either over or under-expressed in head and neck cancer. The expression of these genes was inversely correlated with particular DNA methylation marks, suggesting the genes are epigenetically modified in these cancers.

"These epigenetic markers could be clinically exploited as biomarkers for early pre-cancer screening of head and neck cancer. However, further work is needed, as we are purely at the discovery stage at the moment and have not used this as a diagnostic test as yet.

"The eventual aim would be to test asymptomatic patients and/or people with unknown mouth lesions. An advantage of epigenetic DNA markers is that it may be possible to measure them using non-invasive specimens. So it could enable the use of saliva, buccal scrapes or blood serum for early cancer screening, diagnosis and prognosis."

Consultant oral and maxillofacial surgeon Professor Iain Hutchison, co-author on the study, said he was excited by the possibility of diagnostic tests as a result of the research.

"All of us mouth cancer surgeons want to catch the cancer early when the chances of cure are high and the effects of surgery on the patient are minimal. A simple test using the patient's blood or saliva could mean many patients with pre-cancer changes in the mouth or throat will be treated early and the cancer will never progress."

The study was partly funded by the research charity Saving Faces – The Facial Surgery Research Foundation. Professor Hutchison founded the charity, which aims to reduce facial injuries and diseases through medical research.

*Figures from NHS Choices website --
http://www.nhs.uk/conditions/cancer-of-the-head-and-neck/Pages/Definition.aspx
About Queen Mary University of London
Queen Mary University of London is one of the UK's leading research-focused higher education institutions with some 17,840 undergraduate and postgraduate students.

A member of the Russell Group, it is amongst the largest of the colleges of the University of London. Queen Mary's 4,000staff deliver world class degree programmes and research across 21 academic departments and institutes, within three Faculties: Science and Engineering; Humanities and Social Sciences; and the School of Medicine and Dentistry.

Queen Mary is ranked 11th in the UK according to the Guardian analysis of the 2008 Research Assessment Exercise, and has been described as 'the biggest star among the research-intensive institutions' by the Times Higher Education.

The College has a strong international reputation, with around 20 per cent of students coming from over 100 countries. Queen Mary has an annual turnover of £300m, research income worth £90m, and generates employment and output worth £600m to the UK economy each year.

The College is unique amongst London's universities in being able to offer a completely integrated residential campus, with a 2,000-bed award-winning Student Village on its Mile End campus.

Bridget Dempsey | EurekAlert!
Further information:
http://www.qmul.ac.uk

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>