Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic make-up of children explains how they fight malaria infection

12.09.2012
Researchers from Sainte-Justine University Hospital Center and University of Montreal have identified several novel genes that make some children more efficient than others in the way their immune system responds to malaria infection.

This world-first in integrative efforts to track down genes predisposing to specific immune responses to malaria and ultimately to identify the most suitable targets for vaccines or treatments was published in the Proceedings of the National Academy of Sciences by lead author Dr. Youssef Idaghdour and senior author Pr. Philip Awadalla, whose laboratory has been performing world-wide malaria research for the past 13 years.

"Malaria is a major health problem world-wide, with over 3 billion individuals at risk and hundreds of thousands of deaths annually, a majority of which are African children under the age of 5. Why are some children prone to infection, while others are resistant and efficiently fight the disease? These are the questions we sought to answer with our study", Idaghdour says.

However, to succeed where many other studies have failed, the team used an approach different from the classic in vitro one, where the genome is analyzed using cells grown in a laboratory. Instead, they used an in vivo approach, analyzing blood samples of children from the Republic of Benin, West Africa, collected with the help of collaborators in the city of Cotonou and the nearby village of Zinvié. "This approach allowed us to identify how the "environment" engages in an arms race to define the clinical course of the disease, in this case the environment being the number of parasites detected in the child's blood running against the genetic make-up of the infected child", Idaghdour explains.

"We used an innovative combination of technologies that assessed both genetic variation among children and the conditions in which their genes are "expressed". By doing so, we increased the power of our analysis by permitting us not only to detect the mutations, but also to capture their effect depending on how they affect genes being turned "on" or "off" in presence of the parasite", Awadalla explains. "Our approach made us successful, where million-dollar studies have failed in the past. There has never been this many genes associated with malaria discovered in one study."

This major milestone in understanding how the genetic profile affects the ability of children to cope with infection could pave the way to the development of low-cost genetic profiling tests in a not so far future. "Accurate diagnosis of the infectious agent is critical for appropriate treatment, of course. However, determining a patient's genetic predisposition to infection would allow us to be more aggressive in our treatment of patients, whether we are speaking of vaccines or preventive drugs", Awadalla says.

About the researchers

Dr. Philip Awadalla
Principal investigator, Research Centre at Sainte-Justine University Hospital Centre
Professor, Department of Pediatrics, University of Montreal
Principal investigator and scientific director, CARTaGENE
Dr. Youssef Idaghdour
Post-doctoral researcher, Research Centre at Sainte-Justine University Hospital Centre

Video: http://youtu.be/6Bc0cVflnEU

William Raillant-Clark | EurekAlert!
Further information:
http://www.umontreal.ca

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>