Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic link found between normal fetal growth and cancer

09.04.2013
NIH study identifies a protein that helps trigger both processes
Two researchers at the National Institutes of Health discovered a new genetic link between the rapid growth of healthy fetuses and the uncontrolled cell division in cancer. The findings shed light on normal development and on the genetic underpinnings of common cancers.

The work, conducted using mouse and human tissue, appears in today's issue of the Proceedings of the National Academy of Sciences. The authors, Julian C. Lui, Ph.D., and Jeffrey Baron, M.D., work at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD).

"We've long known that some of the genes that promote rapid growth in prenatal and early postnatal life become reactivated in cancer cells," said Dr. Baron. "Now we've identified a molecular switch that appears to turn on some of these genes, taking us a step forward in understanding normal body growth and the abnormal growth in some types of cancer."

Before birth, a team of more than 200 growth-promoting genes is highly active, fueling the fetus' explosive growth. After birth, these genes are gradually switched off, apparently to slow body growth as we age and approach adult size. In cancer cells, some of these genes can be switched back on.

One of the major growth-promoting genes is called IGF2. This gene is critical for normal prenatal body growth and is reactivated in many types of cancer, showing remarkably high activity in bladder and prostate cancer and some childhood cancers.

For years, scientists did not know what turned IGF2 on and off. Now, using a variety of techniques and tissue types, Drs. Lui and Baron found evidence that a protein known as E2F3 activates the IGF2 gene in normal development and in cancer—in particular, in bladder and metastatic prostate cancers.

More broadly, E2F3 appears to regulate not just IGF2, but also many other genes on the body-growth team. When E2F3 levels are high, these genes are active. When E2F3 takes a dive, so do these genes. The upshot is that E2F3 may function as one of the master switches that limit body growth. As such, it is of great interest as researchers seek to understand the complex genetic choreography responsible for normal growth and the diseases that result when it goes awry.

About the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD):

The NICHD sponsors research on development, before and after birth; maternal, child, and family health; reproductive biology and population issues; and medical rehabilitation. For more information, visit the Institute's website at http://www.nichd.nih.gov/.

About the National Institutes of Health (NIH):
NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIH...Turning Discovery Into Health ®

Alisa Machalek | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>