Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic link found between normal fetal growth and cancer

09.04.2013
NIH study identifies a protein that helps trigger both processes
Two researchers at the National Institutes of Health discovered a new genetic link between the rapid growth of healthy fetuses and the uncontrolled cell division in cancer. The findings shed light on normal development and on the genetic underpinnings of common cancers.

The work, conducted using mouse and human tissue, appears in today's issue of the Proceedings of the National Academy of Sciences. The authors, Julian C. Lui, Ph.D., and Jeffrey Baron, M.D., work at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD).

"We've long known that some of the genes that promote rapid growth in prenatal and early postnatal life become reactivated in cancer cells," said Dr. Baron. "Now we've identified a molecular switch that appears to turn on some of these genes, taking us a step forward in understanding normal body growth and the abnormal growth in some types of cancer."

Before birth, a team of more than 200 growth-promoting genes is highly active, fueling the fetus' explosive growth. After birth, these genes are gradually switched off, apparently to slow body growth as we age and approach adult size. In cancer cells, some of these genes can be switched back on.

One of the major growth-promoting genes is called IGF2. This gene is critical for normal prenatal body growth and is reactivated in many types of cancer, showing remarkably high activity in bladder and prostate cancer and some childhood cancers.

For years, scientists did not know what turned IGF2 on and off. Now, using a variety of techniques and tissue types, Drs. Lui and Baron found evidence that a protein known as E2F3 activates the IGF2 gene in normal development and in cancer—in particular, in bladder and metastatic prostate cancers.

More broadly, E2F3 appears to regulate not just IGF2, but also many other genes on the body-growth team. When E2F3 levels are high, these genes are active. When E2F3 takes a dive, so do these genes. The upshot is that E2F3 may function as one of the master switches that limit body growth. As such, it is of great interest as researchers seek to understand the complex genetic choreography responsible for normal growth and the diseases that result when it goes awry.

About the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD):

The NICHD sponsors research on development, before and after birth; maternal, child, and family health; reproductive biology and population issues; and medical rehabilitation. For more information, visit the Institute's website at http://www.nichd.nih.gov/.

About the National Institutes of Health (NIH):
NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIH...Turning Discovery Into Health ®

Alisa Machalek | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>