Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Link to Dry Macular Degeneration Found

28.08.2008
A University of Kentucky ophthalmologist, along with a team of scientists, has discovered a genetic mutation that offers protection against a type of age-related macular degeneration (AMD), a disease of the eye that is the leading cause of blindness in adults over age 50.

The study, published Wednesday in The New England Journal of Medicine, identifies a functional link between mutation of an immune-system receptor called toll-like receptor 3 (TLR3) and the "dry" type of AMD known as geographic atrophy. The untreatable, progressive disease affects an estimated 8 million Americans, causing permanent vision loss.

The discovery of the first gene associated specifically with dry AMD opens the door to developing treatments, said Dr. Jayakrishna Ambati, a retinal surgeon-scientist in UK's Department of Ophthalmology and Visual Sciences, who along with Dr. Kang Zhang, a retinal specialist and human genetics pioneer at the University of California San Diego, and Nicholas Katsanis, a molecular geneticist at The Johns Hopkins University School of Medicine, led the multi-institutional collaborative study.

Ambati's lab first discovered a relationship between a dysfunctional TLR3 mutation and decreased ocular cell toxicity in a study published in Nature earlier this year. The current study reports that TLR3 activation leads to death of specific cells in the retina and that people with the normal TLR3 gene are two to five times more likely to develop geographic atrophy than those who carry an inactive TLR3 gene mutation.

Ambati’s group plans to start clinical trials next year in patients at risk for developing geographic atrophy using new TLR3 inhibitors developed in his lab.

“We finally have a potential therapy for preventing vision loss from dry AMD," Ambati said. "I am very excited by this discovery."

The study may have major preventive and therapeutic implications, according to Hemin Chin, director of the ocular genetics program at the National Eye Institute.

"Given its high prevalence in the United States and the world, finding effective prevention and treatment strategies for AMD is of critical importance," Chin said. "This finding represents a major advancement in our understanding of dry AMD, for which effective treatment is not yet available."

Of more immediate significance, an investigational drug modality known as short interfering RNA (siRNA) – currently in advanced phase trials for the "wet" type of AMD – also activates TLR3, as shown by Ambati’s earlier Nature study and recently confirmed by another laboratory in the journal Nature Structural & Molecular Biology. The New England Journal of Medicine study raises the possibility that siRNA-based therapies could cause geographic atrophy.

“Collectively, these studies highlight the importance of critically assessing the potential risk posed to patients by siRNA-based therapies,” Ambati said.

Dr. Mark Kleinman and Dr. Wongil Cho, postdoctoral scholars in Ambati's lab, performed the functional studies linking TLR3 and dry AMD in human cells and animal models. Ambati’s laboratory is supported by the NIH National Eye Institute, Burroughs Wellcome Fund, Research to Prevent Blindness, American Health Assistance Foundation, Macula Vision Research Foundation, and Dr. E. Vernon & Eloise C. Smith Endowed Chair. The Foundation Fighting Blindness, Macula Vision Research Foundation, Veterans Affairs Administration; and Ruth and Milton Steinbach Fund also funded this study.

Scientists from University of Utah School of Medicine, Johns Hopkins University, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital in Chengdu, China, Oregon Health & Science University, University of California San Diego, Greater Baltimore Medical Center, Keck School of Medicine of the University of Southern California and Rockefeller University were part of this joint effort as well.

We "see blue" at the University of Kentucky. We're home not only to powerhouse basketball and the best of intercollegiate athletics; we're also nationally ranked in more than 70 academic programs. We're charting an aggressive, exciting path toward becoming a Top 20 public research institution. “see blue.” is a lot of things, but most of all it's about helping students realize their potential and harness the power of their dreams.

For more about UK’s efforts to become a Top 20 university and how we "see blue," visit www.uky.edu/OPBPA/business_plan.htm

Ann Blackford | Newswise Science News
Further information:
http://www.uky.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>