Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic Link to Dry Macular Degeneration Found

A University of Kentucky ophthalmologist, along with a team of scientists, has discovered a genetic mutation that offers protection against a type of age-related macular degeneration (AMD), a disease of the eye that is the leading cause of blindness in adults over age 50.

The study, published Wednesday in The New England Journal of Medicine, identifies a functional link between mutation of an immune-system receptor called toll-like receptor 3 (TLR3) and the "dry" type of AMD known as geographic atrophy. The untreatable, progressive disease affects an estimated 8 million Americans, causing permanent vision loss.

The discovery of the first gene associated specifically with dry AMD opens the door to developing treatments, said Dr. Jayakrishna Ambati, a retinal surgeon-scientist in UK's Department of Ophthalmology and Visual Sciences, who along with Dr. Kang Zhang, a retinal specialist and human genetics pioneer at the University of California San Diego, and Nicholas Katsanis, a molecular geneticist at The Johns Hopkins University School of Medicine, led the multi-institutional collaborative study.

Ambati's lab first discovered a relationship between a dysfunctional TLR3 mutation and decreased ocular cell toxicity in a study published in Nature earlier this year. The current study reports that TLR3 activation leads to death of specific cells in the retina and that people with the normal TLR3 gene are two to five times more likely to develop geographic atrophy than those who carry an inactive TLR3 gene mutation.

Ambati’s group plans to start clinical trials next year in patients at risk for developing geographic atrophy using new TLR3 inhibitors developed in his lab.

“We finally have a potential therapy for preventing vision loss from dry AMD," Ambati said. "I am very excited by this discovery."

The study may have major preventive and therapeutic implications, according to Hemin Chin, director of the ocular genetics program at the National Eye Institute.

"Given its high prevalence in the United States and the world, finding effective prevention and treatment strategies for AMD is of critical importance," Chin said. "This finding represents a major advancement in our understanding of dry AMD, for which effective treatment is not yet available."

Of more immediate significance, an investigational drug modality known as short interfering RNA (siRNA) – currently in advanced phase trials for the "wet" type of AMD – also activates TLR3, as shown by Ambati’s earlier Nature study and recently confirmed by another laboratory in the journal Nature Structural & Molecular Biology. The New England Journal of Medicine study raises the possibility that siRNA-based therapies could cause geographic atrophy.

“Collectively, these studies highlight the importance of critically assessing the potential risk posed to patients by siRNA-based therapies,” Ambati said.

Dr. Mark Kleinman and Dr. Wongil Cho, postdoctoral scholars in Ambati's lab, performed the functional studies linking TLR3 and dry AMD in human cells and animal models. Ambati’s laboratory is supported by the NIH National Eye Institute, Burroughs Wellcome Fund, Research to Prevent Blindness, American Health Assistance Foundation, Macula Vision Research Foundation, and Dr. E. Vernon & Eloise C. Smith Endowed Chair. The Foundation Fighting Blindness, Macula Vision Research Foundation, Veterans Affairs Administration; and Ruth and Milton Steinbach Fund also funded this study.

Scientists from University of Utah School of Medicine, Johns Hopkins University, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital in Chengdu, China, Oregon Health & Science University, University of California San Diego, Greater Baltimore Medical Center, Keck School of Medicine of the University of Southern California and Rockefeller University were part of this joint effort as well.

We "see blue" at the University of Kentucky. We're home not only to powerhouse basketball and the best of intercollegiate athletics; we're also nationally ranked in more than 70 academic programs. We're charting an aggressive, exciting path toward becoming a Top 20 public research institution. “see blue.” is a lot of things, but most of all it's about helping students realize their potential and harness the power of their dreams.

For more about UK’s efforts to become a Top 20 university and how we "see blue," visit

Ann Blackford | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>