Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic irregularities linked to higher risk of COPD among smokers

Scientists at Duke University Medical Center have discovered two genetic markers that appear to put some smokers at significantly higher risk of developing chronic obstructive pulmonary disease (COPD).

The findings come from the first-ever genome-wide association study of COPD and suggest that those who carry the markers may be able to reduce their risk if they quit smoking before the first symptoms of COPD occur.

"The public health message would probably be 'quit before it's too late,'" says David Goldstein, Ph.D., director of the Institute for Genome Sciences Center for Human Genome Variation at Duke and the senior author of the study appearing in PLoS Genetics.

Chronic obstructive pulmonary disease is one of the leading causes of death worldwide. While smoking is the biggest risk factor, there is considerable variation among those who develop the disease. Genetics plays a role, but until now, there has only been one biological marker proven to be associated with COPD – a deficit of the protein A1AT, which has also been linked to the development of lung cancer.

"But we know that A1AT deficiency appears in only 1-2 percent of people with COPD, so we were pretty sure that there had to be other genetic variants at work, as well," says Goldstein.

To discover if that hunch might prove true, Goldstein led an international team of investigators in examining the genomes of 823 people with COPD and 810 smokers without COPD in Norway. They were looking for the presence of the 100 top genetic variations already documented in individuals with COPD enrolled in the family-based International COPD Genetics Network. They then took the most frequently occurring alterations from that study and evaluated them in three additional, independent groups: patients in the U.S. National Emphysema Treatment Trial, individuals enrolled in the Boston Early-Onset COPD study and a control group from the Normative Aging Study.

The genome-wide association study revealed several genetic aberrations that might be linked to COPD. But after a series of statistical analyses, only two single letter changes in DNA - (called single nucleotide polymorphisms, SNPs, or "snips") emerged as significant. Both were located near a nicotine receptor on chromosome 15 that has already been associated with lung cancer and other respiratory disorders. The SNPs also appeared with significant frequency among members of the international COPD genetics and emphysema groups.

"We believe that smokers who have these two SNPs face a nearly two-fold increase in risk of developing COPD, when compared with those who do not have these gene variants," says Goldstein. "We also believe that these two alterations directly affect how the lungs function – that they may actually mediate the risk of developing COPD."

The authors also ran tests among those who developed COPD and those who did not to find out if there was any relationship between the variants and how much people smoked. They didn't find any association, reinforcing the notion that these variants influence risk independent of smoking behavior.

The findings represent the discovery of the first major locus contributing to COPD in the general population. While Goldstein says the discovery may well open new therapeutic windows, it may also prompt clinicians to take another look at how they assess health risk among smokers.

"While it is clear that choosing to smoke is one of the worst health decisions a person can make, we now know that choice is even worse for some people than others," Goldstein said. "Our study also suggests that familiar measures of risk such as packs per day or smoking years, while informative, tell only a part of the story. The rest of the story is all about genetics, and it is still being written."

Michelle Gailiun | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>