Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic finding could lead to targeted therapy for neuroblastoma

26.06.2009
Researchers have identified a genetic glitch that could lead to development of neuroblastoma, a deadly form of cancer that typically strikes children under 2.

Two University of Florida scientists are part of the multicenter team of researchers that made the discovery, which could pave the way for better treatments that target the disease, according to findings published Wednesday in the journal Nature.

"What makes our study so important is that although neuroblastoma accounts for 7 percent of childhood cancers, it is responsible for 15 percent of deaths in children with cancer," said Wendy London, Ph.D., a research associate professor of epidemiology, biostatistics and health policy research at the UF College of Medicine and a member of the UF Shands Cancer Center. "This paper adds yet another gene in the pathway that could lead to tumorigenesis (tumor formation) of neuroblastoma."

Neuroblastoma forms in developing nerve cells, with tumors most often found on a child's adrenal gland. It's the most common form of cancer in babies and the third most common childhood cancer, according to the American Cancer Society.

Led by John J. Maris, M.D., director of the Cancer Center at The Children's Hospital of Philadelphia, researchers performed what's known as a genome-wide association study to uncover errors in DNA that could be associated with neuroblastoma.

To do this, researchers analyzed the genetic makeup of 846 patients with neuroblastoma, whose samples were derived from the Children's Oncology Group Neuroblastoma Tumor Bank, and 803 healthy patients in a control group.

On the basis of their initial findings, the researchers performed a second validation analysis, pinpointing that a glitch called a "copy number variation" in a single chromosome is associated with neuroblastoma. Copy number variation has to do with the gain, loss or duplication of snippets of DNA.

"This is part of series of papers that creates the bigger picture, an understanding of the genetic mechanisms that lead to neuroblastoma," said London, the principal investigator for the Children's Oncology Group Statistics and Data Center at UF. "We are searching for genetic targets to treat with therapy."

The researchers reported additional genetic links in Nature Genetics in May. The team discovered that on the gene called BARD1, six single-nucleotide polymorphisms — variations in tiny pieces of DNA — were also associated with neuroblastoma.

"Only two years ago we had very little idea of what causes neuroblastoma," said Maris, who led both studies. "Now we have unlocked a lot of the mystery of why neuroblastoma arises in some children and not in others."

Although neuroblastoma is one of the more common childhood cancers, it is relatively rare overall when compared with more common adult cancers, which has proved to be a challenge for researchers trying to uncover its causes, said Peter Zage, M.D., Ph.D., an assistant professor of pediatrics at the Children's Cancer Hospital at the University of Texas M.D. Anderson Cancer Center.

"Dr. Maris' group has been able to collect a relatively large number of cases for a neuroblastoma study and so has been able to identify these genetic variations and specific genes to provide us with some new avenues for therapy that we probably would not have been able to identify looking at the smaller cohorts of patients we each see at our individual institutions. In that sense, it's certainly an amazing leap forward in our understanding of the disease."

The discovery does hold promise for developing treatments, but London cautions that these potential "targeted therapies" won't work on all neuroblastoma patients. Not all neuroblastoma patients have this particular genetic anomaly, and not all children with this anomaly will develop neuroblastoma. Development of neuroblastoma is complicated and can occur because of multiple reasons, arising after a complex chain of events, London said.

"What's amazing is there are so many different ways for tumorigenesis to occur," London said. "That's the reason it is so hard to treat and cure cancer, or even to understand why it happens and how it happens."

All the researchers involved in the study are members of the Children's Oncology Group, the only National Institutes of Health/National Cancer Institute pediatric cancer cooperative group. The group performs clinical trials, collects specimens and performs statistical analysis related to pediatric cancers. UF is one of three institutions with a COG Statistics and Data Center, where study design, data collection and statistical analysis for COG research occurs.

April Frawley Birdwell | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>