Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Genetic Evidence Confirms Coyote Migration Route to Virginia and Hybridization with Wolves

Changes in North American ecosystems over the past 150 years have caused coyotes to move from their native habitats in the plains and southwestern deserts of North America to habitats throughout the United States.

In a new study, published Oct. 17 in the Journal of Mammalogy, researchers from the Smithsonian Conservation Biology Institute’s Center for Conservation and Evolutionary Genetics used DNA from coyote scat (feces) to trace the route that led some of the animals to colonize in Northern Virginia. The researchers also confirmed that, along the way, the coyotes interbred with the native Great Lakes wolves.

According to the study, coyotes migrated eastward via two main routes—one that went through the northern United States, and one that went through the south. Using DNA samples, the researchers found that Virginian coyotes were most closely related to coyote populations in western New York and Pennsylvania. It appears the northern trekkers eventually encountered the Great Lakes wolves and interbred before converging again on the East Coast. They then gradually headed south along the Appalachian Mountains toward what is considered the Mid-Atlantic region, to an area centered around Virginia.

“The Mid-Atlantic region is a particularly interesting place because it appears to mark a convergence in northern and southern waves of coyote expansion,” said Christine Bozarth, an SCBI research fellow and lead author on the paper. “I like to call it the Mid-Atlantic melting pot.”

Bozarth and her colleagues collected scat samples in Northern Virginia from local coyote populations. They were then able to extract DNA from the intestinal cells in the scat and compare it to the DNA from preserved historic wolf specimens that had lived in the Great Lakes region before coyotes colonized the area. They shared some of the same genes, supporting the hybridization theory. Hybridization between canid species usually occurs when one species is rare. Those individuals may have trouble finding mates and therefore breed instead with closely related species.

“This does not mean that we have massive, wolf-like coyotes roaming around here in Virginia,” Bozarth said. “Coyotes with wolf ancestry have differently shaped jaws, which may allow them to fill different ecological niches. They tend to hunt small prey and scavenge large game, so hybrid coyotes might be helpful in controlling the overly abundant deer population.”

While coyote populations have been expanding, wolf populations have become endangered. Hybridization with coyotes is now a major threat to the recovery of wolves.

“For the past decade, our lab has developed and used noninvasive techniques to monitor and survey rare and endangered species in various regions of the world and in this study, we were able to show that noninvasive techniques can also be an effective tool for tracking the origins and movement patterns of this elusive canid,” Jesús Maldonado, SCBI research geneticist and paper co-author. “The admixed coyotes have also been found further south, into North Carolina, which brings the hybridized coyote into the range of the critically endangered red wolf, further complicating the issue.”

The study’s authors from SCBI are Bozarth, Maldonado and Frank Hailer (now a postdoctoral researcher at the Biodiversity and Climate Research Center in Frankfurt, Germany). Bozarth is currently an assistant professor in the science, technology and business division at Northern Virginia Community College. The additional authors are Larry Rockwood and Cody Edwards from the department of environmental science and policy at George Mason University.

The Smithsonian Conservation Biology Institute plays a key role in the Smithsonian’s global efforts to understand and conserve species and train future generations of conservationists. Headquartered in Front Royal, Va., SCBI facilitates and promotes research programs based at Front Royal, the National Zoo in Washington, D.C., and at field research stations and training sites worldwide.

Lindsay Renick Mayer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>