Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Genetic Evidence Confirms Coyote Migration Route to Virginia and Hybridization with Wolves

26.10.2011
Changes in North American ecosystems over the past 150 years have caused coyotes to move from their native habitats in the plains and southwestern deserts of North America to habitats throughout the United States.

In a new study, published Oct. 17 in the Journal of Mammalogy, researchers from the Smithsonian Conservation Biology Institute’s Center for Conservation and Evolutionary Genetics used DNA from coyote scat (feces) to trace the route that led some of the animals to colonize in Northern Virginia. The researchers also confirmed that, along the way, the coyotes interbred with the native Great Lakes wolves.

According to the study, coyotes migrated eastward via two main routes—one that went through the northern United States, and one that went through the south. Using DNA samples, the researchers found that Virginian coyotes were most closely related to coyote populations in western New York and Pennsylvania. It appears the northern trekkers eventually encountered the Great Lakes wolves and interbred before converging again on the East Coast. They then gradually headed south along the Appalachian Mountains toward what is considered the Mid-Atlantic region, to an area centered around Virginia.

“The Mid-Atlantic region is a particularly interesting place because it appears to mark a convergence in northern and southern waves of coyote expansion,” said Christine Bozarth, an SCBI research fellow and lead author on the paper. “I like to call it the Mid-Atlantic melting pot.”

Bozarth and her colleagues collected scat samples in Northern Virginia from local coyote populations. They were then able to extract DNA from the intestinal cells in the scat and compare it to the DNA from preserved historic wolf specimens that had lived in the Great Lakes region before coyotes colonized the area. They shared some of the same genes, supporting the hybridization theory. Hybridization between canid species usually occurs when one species is rare. Those individuals may have trouble finding mates and therefore breed instead with closely related species.

“This does not mean that we have massive, wolf-like coyotes roaming around here in Virginia,” Bozarth said. “Coyotes with wolf ancestry have differently shaped jaws, which may allow them to fill different ecological niches. They tend to hunt small prey and scavenge large game, so hybrid coyotes might be helpful in controlling the overly abundant deer population.”

While coyote populations have been expanding, wolf populations have become endangered. Hybridization with coyotes is now a major threat to the recovery of wolves.

“For the past decade, our lab has developed and used noninvasive techniques to monitor and survey rare and endangered species in various regions of the world and in this study, we were able to show that noninvasive techniques can also be an effective tool for tracking the origins and movement patterns of this elusive canid,” Jesús Maldonado, SCBI research geneticist and paper co-author. “The admixed coyotes have also been found further south, into North Carolina, which brings the hybridized coyote into the range of the critically endangered red wolf, further complicating the issue.”

The study’s authors from SCBI are Bozarth, Maldonado and Frank Hailer (now a postdoctoral researcher at the Biodiversity and Climate Research Center in Frankfurt, Germany). Bozarth is currently an assistant professor in the science, technology and business division at Northern Virginia Community College. The additional authors are Larry Rockwood and Cody Edwards from the department of environmental science and policy at George Mason University.

The Smithsonian Conservation Biology Institute plays a key role in the Smithsonian’s global efforts to understand and conserve species and train future generations of conservationists. Headquartered in Front Royal, Va., SCBI facilitates and promotes research programs based at Front Royal, the National Zoo in Washington, D.C., and at field research stations and training sites worldwide.

Lindsay Renick Mayer | EurekAlert!
Further information:
http://www.si.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>