Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Genetic Evidence Confirms Coyote Migration Route to Virginia and Hybridization with Wolves

26.10.2011
Changes in North American ecosystems over the past 150 years have caused coyotes to move from their native habitats in the plains and southwestern deserts of North America to habitats throughout the United States.

In a new study, published Oct. 17 in the Journal of Mammalogy, researchers from the Smithsonian Conservation Biology Institute’s Center for Conservation and Evolutionary Genetics used DNA from coyote scat (feces) to trace the route that led some of the animals to colonize in Northern Virginia. The researchers also confirmed that, along the way, the coyotes interbred with the native Great Lakes wolves.

According to the study, coyotes migrated eastward via two main routes—one that went through the northern United States, and one that went through the south. Using DNA samples, the researchers found that Virginian coyotes were most closely related to coyote populations in western New York and Pennsylvania. It appears the northern trekkers eventually encountered the Great Lakes wolves and interbred before converging again on the East Coast. They then gradually headed south along the Appalachian Mountains toward what is considered the Mid-Atlantic region, to an area centered around Virginia.

“The Mid-Atlantic region is a particularly interesting place because it appears to mark a convergence in northern and southern waves of coyote expansion,” said Christine Bozarth, an SCBI research fellow and lead author on the paper. “I like to call it the Mid-Atlantic melting pot.”

Bozarth and her colleagues collected scat samples in Northern Virginia from local coyote populations. They were then able to extract DNA from the intestinal cells in the scat and compare it to the DNA from preserved historic wolf specimens that had lived in the Great Lakes region before coyotes colonized the area. They shared some of the same genes, supporting the hybridization theory. Hybridization between canid species usually occurs when one species is rare. Those individuals may have trouble finding mates and therefore breed instead with closely related species.

“This does not mean that we have massive, wolf-like coyotes roaming around here in Virginia,” Bozarth said. “Coyotes with wolf ancestry have differently shaped jaws, which may allow them to fill different ecological niches. They tend to hunt small prey and scavenge large game, so hybrid coyotes might be helpful in controlling the overly abundant deer population.”

While coyote populations have been expanding, wolf populations have become endangered. Hybridization with coyotes is now a major threat to the recovery of wolves.

“For the past decade, our lab has developed and used noninvasive techniques to monitor and survey rare and endangered species in various regions of the world and in this study, we were able to show that noninvasive techniques can also be an effective tool for tracking the origins and movement patterns of this elusive canid,” Jesús Maldonado, SCBI research geneticist and paper co-author. “The admixed coyotes have also been found further south, into North Carolina, which brings the hybridized coyote into the range of the critically endangered red wolf, further complicating the issue.”

The study’s authors from SCBI are Bozarth, Maldonado and Frank Hailer (now a postdoctoral researcher at the Biodiversity and Climate Research Center in Frankfurt, Germany). Bozarth is currently an assistant professor in the science, technology and business division at Northern Virginia Community College. The additional authors are Larry Rockwood and Cody Edwards from the department of environmental science and policy at George Mason University.

The Smithsonian Conservation Biology Institute plays a key role in the Smithsonian’s global efforts to understand and conserve species and train future generations of conservationists. Headquartered in Front Royal, Va., SCBI facilitates and promotes research programs based at Front Royal, the National Zoo in Washington, D.C., and at field research stations and training sites worldwide.

Lindsay Renick Mayer | EurekAlert!
Further information:
http://www.si.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Controlling robots with brainwaves and hand gestures

20.06.2018 | Information Technology

Electron sandwich doubles thermoelectric performance

20.06.2018 | Power and Electrical Engineering

Intelligent maps will help robots navigate in your home

20.06.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>