Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic evidence clears Ben Franklin

Invasive tree afflicting Gulf Coast was not brought to US by Ben Franklin

The DNA evidence is in, and Ben Franklin didn't do it.

Invasive Chinese tallow trees have overrun thousands of acres of tall grass coastal prairie on the US Gulf Coast. Credit: Rice University

Genetic tests on more than 1,000 Chinese tallow trees from the United States and China show the famed U.S. statesman did not import the tallow trees that are overrunning thousands of acres of U.S. coastal prairie from Florida to East Texas.

"It's widely known that Franklin introduced tallow trees to the U.S. in the late 1700s," said Rice University biologist Evan Siemann, co-author the new study in this month's American Journal of Botany. "Franklin was living in London, and he had tallow seeds shipped to associates in Georgia."

What Franklin couldn't have known at the time was that tallow trees would overachieve in the New World. Today, the trees are classified as an invasive species. Like Asian carp in the Great Lakes and kudzu vines in the eastern U.S., the trees are spreading so fast that they're destroying native habitats and causing economic damage.

Each tallow tree can produce up to a half million seeds per year. That fertility is one reason Franklin and others were interested in them; each seed is covered by a waxy, white tallow that can be processed to make soap, candles and edible oil.

Siemann, professor and chair of ecology and evolutionary biology at Rice, has spent more than 10 years compiling evidence on the differences between U.S. and Chinese tallow trees. For example, the insects that help keep tallow trees in check in Asia do not live in the U.S., and Siemann and his colleagues have found that the U.S. trees invest far less energy in producing chemicals that ward off insects. They've also found that U.S. trees grow about 30 percent faster than their Chinese kin.

"This raises some interesting scientific questions," Siemann said. "Are tallow trees in the U.S. undergoing evolutionary selection? Did those original plants brought from China have the traits to be successful or did they change after they arrived? Does it matter where they came from in China, or would any tallow tree do just as well in the U.S.?"

In 2005, Siemann set out to gather genetic evidence that could help answer such questions. With funding from the National Science Foundation and the Department of Agriculture, he and study co-authors William Rogers, now at Texas A&M University, and Saara DeWalt, now at Clemson University, collected and froze leaves from more than 1,000 tallow trees at 51 sites in the U.S. and a dozen sites in China. The researchers conducted hundreds of genetic scans on the leaves, and they spent more than two years analyzing and correlating the results.

There were a few surprises. First, the tallow trees that are running amok in most of the U.S. aren't from the batch that Franklin imported. The descendants of Franklin's trees are confined to a few thousand square miles of coastal plain in northern Georgia and southern South Carolina. All other U.S. tallow trees the team sampled were descended from seeds brought to the U.S. by federal biologists around 1905.

"The genetic picture for Franklin's trees is muddled; we may never know where they originated," Siemann said. "But the genetic evidence for the other population -- the one that's problematic in the Gulf Coast -- clearly points to it being descended from eastern China, probably in the area around Shanghai."

In controlled tests in China, the researchers found the U.S. trees even grew and spread faster than their Chinese forebears, despite the lack of chemical defenses to ward off insects.

"They suffered twice the damage from insects that the natives did, but they grew so much faster that they still retained a competitive edge," Siemann said.

"In some ways, this raises even more questions, but it clearly shows that if you are going to explore control methods for an invasive species, you to need to use appropriate genetic material to make certain your tests are valid."

Siemann said that with many new species of plants and animals still being introduced from foreign environments into the U.S. each year, it is vitally important for scientists to better understand the circumstances that cause introduced species to cross the line and become dangerous invasive pests.

Jade Boyd | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>