Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Engineering Alters Mosquitoes’ Sense of Smell

31.05.2013
In one of the first successful attempts at genetically engineering mosquitoes, HHMI researchers have altered the way the insects respond to odors, including the smell of humans and the insect repellant DEET.

The research not only demonstrates that mosquitoes can be genetically altered using the latest research techniques, but paves the way to understanding why the insect is so attracted to humans, and how to block that attraction.

“The time has come now to do genetics in these important disease-vector insects. I think our new work is a great example that you can do it,” says Leslie Vosshall, an HHMI investigator at The Rockefeller University who led the new research, published May 29, 2013 in the journal Nature.

In 2007, scientists announced the completion of the full genome sequence of Aedes aegypti, the mosquito that transmits dengue and yellow fever. A year later, when Vosshall became an HHMI investigator, she shifted the focus of her lab from Drosophila flies to mosquitoes with the specific goal of genetically engineering the insects. Studying mosquitoes appealed to her because of their importance as disease carriers, as well as their unique attraction to humans.

Vosshall’s first target: a gene called orco, which her lab had deleted in genetically engineered flies 10 years earlier. “We knew this gene was important for flies to be able to respond to the odors they respond to,” says Vosshall. “And we had some hints that mosquitoes interact with smells in their environment, so it was a good bet that something would interact with orco in mosquitoes.”

Vosshall’s team turned to a genetic engineering tool called zinc-finger nucleases to specifically mutate the orco gene in Aedes aegypti. They injected the targeted zinc-finger nucleases into mosquito embryos, waited for them to mature, identified mutant individuals, and generated mutant strains that allowed them to study the role of orco in mosquito biology. The engineered mosquitoes showed diminished activity in neurons linked to odor-sensing. Then, behavioral tests revealed more changes.

When given a choice between a human and any other animal, normal Aedes aegypti will reliably buzz toward the human. But the mosquitoes with orco mutations showed reduced preference for the smell of humans over guinea pigs, even in the presence of carbon dioxide, which is thought to help mosquitoes respond to human scent. “By disrupting a single gene, we can fundamentally confuse the mosquito from its task of seeking humans,” says Vosshall. But they don’t yet know whether the confusion stems from an inability to sense a “bad” smell coming from the guinea pig, a “good” smell from the human, or both.

Next, the team tested whether the mosquitoes with orco mutations responded differently to DEET. When exposed to two human arms—one slathered in a solution containing 10 percent DEET, the active ingredient in many bug repellants, and the other untreated—the mosquitoes flew equally toward both arms, suggesting they couldn’t smell the DEET. But once they landed on the arms, they quickly flew away from the DEET-covered one. “This tells us that there are two totally different mechanisms that mosquitoes are using to sense DEET,” explains Vosshall. “One is what’s happening in the air, and the other only comes into action when the mosquito is touching the skin.” Such dual mechanisms had been discussed but had never been shown before.

Vosshall and her collaborators next want to study in more detail how the orco protein interacts with the mosquitoes’ odorant receptors to allow the insects to sense smells. “We want to know what it is about these mosquitoes that makes them so specialized for humans,” she says. “And if we can also provide insights into how existing repellants are working, then we can start having some ideas about what a next-generation repellant would look like.”

FOR FURTHER
INFORMATION:
Jennifer Michalowski
(301) 215-8576
michalow@hhmi.org
Robert Gutnikoff
301-215-8627
gutnikoffr@hhmi.org
Howard Hughes
Medical Institute
4000 Jones Bridge Road Chevy Chase, MD 20815-6789
(301) 215-8500

Jennifer Michalowski | Newswise
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>