Genetic Diversity of Enzymes Alters Metabolic Individuality

The metabolites in plasma were analyzed by NMR spectroscopy. Copyright : Tohoku University

“We discovered genetic variants affecting enzymatic activities in healthy people,” said Dr. Seizo Koshiba. “Our study shows that genetic polymorphisms, structural location of mutation and effect for phenotype correlate with each other in the human population. This implies that metabolic individuality and susceptibility for diseases are possibly resulted from the moderate variants and much more deleterious, but rare, variants.”

In their analyses, researchers found the following results:

– The relationship between structural variants of enzymes and metabolic phenotypes in the human population was surveyed in the association study of metabolite concentrations with whole genome sequence analysis data.

– Five associations between metabolites and gene variants were identified. Four of the gene variants are known to be related to metabolic diseases. The residues substituted by these variants are located in peripheral regions of the catalytic sites or related regulatory domains of enzymes.

– Two people have larger changes of metabolite levels of phenylalanine. They had rare gene variants, which substitute residues located near the catalytic site.

– These data demonstrate that variant frequency, structural location and effect for phenotype correlate with each other in the human population.

ToMMo will study environmental and genetic influence on individual differences of proteomics and metabolomics. ToMMo aims to discover useful biomarkers for disease prevention and early diagnosis through the identification and quantification of metabolites in blood. Such studies can contribute to the advancement of personalized prevention and treatment of diseases, as well as the identification of disease mechanisms and development of new therapeutics.

These findings are based on the analysis of blood samples from 512 healthy people who participated in the Tohoku Medical Megabank Project Community-Based Cohort Study and the Birth and Three-Generation Cohort Study.

Some of the data can be found on ToMMo's website: Japanese Multi Omics Reference Panel (jMorp) (please see the link below).

Contact:
Fuji Nagami
Tohoku Medical Megabank Organization, Tohoku University
Email: f-nagami@med.tohoku.ac.jp
  http://www.megabank.tohoku.ac.jp/english/

Associated links

Journal information

Authors: Seizo Koshiba, Ikuko Motoike, Kaname Kojima, Takanori Hasegawa, Matsuyuki Shirota, Tomo Saito, Daisuke Saigusa, Inaho Danjoh, Fumiki Katsuoka, Soichi Ogishima, Yosuke Kawai, Yumi Yamaguchi-Kabata, Miyuki Sakurai, Sachiko Hirano, Junichi Nakata, Hozumi Motohashi, Atsushi Hozawa, Shinichi Kuriyama, Naoko Minegishi, Masao Nagasaki, Takako Takai-Igarashi, Nobuo Fuse, Hideyasu Kiyomoto, Junichi Sugawara, Yoichi Suzuki, Shigeo Kure, Nobuo Yaegashi, Osamu Tanabe, Kengo Kinoshita, Jun Yasuda and Masayuki Yamamoto
Title: The structural origin of metabolic quantitative diversity
Journal: Scientific Reports
DOI: 10.1038/srep31463

Media Contact

Ngaroma Riley Research SEA

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors