Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cause of genetic disorder found in 'dark matter' of DNA

11.11.2013
For the first time, scientists have used new technology which analyses the whole genome to find the cause of a genetic disease in what was previously referred to as 'junk DNA'

For the first time, scientists have used new technology which analyses the whole genome to find the cause of a genetic disease in what was previously referred to as "junk DNA".

Pancreatic agenesis results in babies being born without a pancreas, leaving them with a lifetime of diabetes and problems digesting food. In a breakthrough for genetic research, teams led by the University of Exeter Medical School and Imperial College London found that the condition is most commonly caused by mutations in a newly identified gene regulatory element in a remote part of the genome, which can now be explored thanks to advances in genetic sequencing.

In a study published today (November 10 2013) in Nature Genetics, the team discovered that the condition is caused by mutations in genomic "dark matter", the vast stretches of DNA that do not contain genes that accounts for 99 per cent of the human genome. Instead, it is responsible for making sure that genes are "switched on" at the right time and in the right part of the body. The effects of this region on human development is only beginning to be understood, thanks to technologies which allow scientists to analyse the whole genome – all 3 billion letters in our DNA codes.

The research was funded through the Wellcome Trust, the European Community's Seventh Framework Programme and the National Institute for Health Research (NIHR) Exeter Clinical Research Facility.

Dr Mike Weedon, lead researcher and Senior Lecturer at the University of Exeter Medical School, said: "This breakthrough delves into the 'dark matter' of the genome, which until recently, was very difficult to systematically study. Now, advances in DNA sequencing technology mean we have the tools to explore these non-protein coding regions far more thoroughly, and we are finding it has a significant impact on development and disease."

The pancreas plays an essential role in regulating levels of sugar (glucose) in the blood. It does this by the release of the hormone insulin, which is generated and released by cells known as pancreatic beta cells. It also produces enzymes to help digest and absorb food.

Pancreatic agenesis means babies have diabetes from birth and problems with digesting food which prevents weight gain. The disease is rare, but its study also helps scientists gain a better understanding of how the pancreas works, which helps shed light on research into diabetes.

Professor Andrew Hattersley, a Wellcome Trust Senior Investigator who led the Exeter team said: "This finding gives a deeper understanding to families affected by this disorder, and it also tells us more about how the pancreas develops. In the longer term, this insight could have implications for regenerative stem cell treatments for Type 1 Diabetes."

The team found six different mutations in a newly discovered PTF1A regulatory region in eleven people affected by pancreatic agenesis from across the world.

The collaboration also involved: the Institut d'Investigacions Biomèdiques August Pi I Sunyer, Spain; CIBER de Diabetes y Enfermedades Metabólicas, Spain; Universidad de Buenos Aires; Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute; Seattle Children's Hospital Research Institute; King's College London; London Centre for Paediatric Endocrinology and Metabolism, in partnership with the Great Ormond Street Hospital for Children National Health Service Trust; University College London.

Louise Vennells | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>