Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cause of genetic disorder found in 'dark matter' of DNA

11.11.2013
For the first time, scientists have used new technology which analyses the whole genome to find the cause of a genetic disease in what was previously referred to as 'junk DNA'

For the first time, scientists have used new technology which analyses the whole genome to find the cause of a genetic disease in what was previously referred to as "junk DNA".

Pancreatic agenesis results in babies being born without a pancreas, leaving them with a lifetime of diabetes and problems digesting food. In a breakthrough for genetic research, teams led by the University of Exeter Medical School and Imperial College London found that the condition is most commonly caused by mutations in a newly identified gene regulatory element in a remote part of the genome, which can now be explored thanks to advances in genetic sequencing.

In a study published today (November 10 2013) in Nature Genetics, the team discovered that the condition is caused by mutations in genomic "dark matter", the vast stretches of DNA that do not contain genes that accounts for 99 per cent of the human genome. Instead, it is responsible for making sure that genes are "switched on" at the right time and in the right part of the body. The effects of this region on human development is only beginning to be understood, thanks to technologies which allow scientists to analyse the whole genome – all 3 billion letters in our DNA codes.

The research was funded through the Wellcome Trust, the European Community's Seventh Framework Programme and the National Institute for Health Research (NIHR) Exeter Clinical Research Facility.

Dr Mike Weedon, lead researcher and Senior Lecturer at the University of Exeter Medical School, said: "This breakthrough delves into the 'dark matter' of the genome, which until recently, was very difficult to systematically study. Now, advances in DNA sequencing technology mean we have the tools to explore these non-protein coding regions far more thoroughly, and we are finding it has a significant impact on development and disease."

The pancreas plays an essential role in regulating levels of sugar (glucose) in the blood. It does this by the release of the hormone insulin, which is generated and released by cells known as pancreatic beta cells. It also produces enzymes to help digest and absorb food.

Pancreatic agenesis means babies have diabetes from birth and problems with digesting food which prevents weight gain. The disease is rare, but its study also helps scientists gain a better understanding of how the pancreas works, which helps shed light on research into diabetes.

Professor Andrew Hattersley, a Wellcome Trust Senior Investigator who led the Exeter team said: "This finding gives a deeper understanding to families affected by this disorder, and it also tells us more about how the pancreas develops. In the longer term, this insight could have implications for regenerative stem cell treatments for Type 1 Diabetes."

The team found six different mutations in a newly discovered PTF1A regulatory region in eleven people affected by pancreatic agenesis from across the world.

The collaboration also involved: the Institut d'Investigacions Biomèdiques August Pi I Sunyer, Spain; CIBER de Diabetes y Enfermedades Metabólicas, Spain; Universidad de Buenos Aires; Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute; Seattle Children's Hospital Research Institute; King's College London; London Centre for Paediatric Endocrinology and Metabolism, in partnership with the Great Ormond Street Hospital for Children National Health Service Trust; University College London.

Louise Vennells | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>