Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic discovery could lead to advances in dental treatment

25.02.2009
Researchers have identified the gene that ultimately controls the production of tooth enamel, a significant advance that could some day lead to the repair of damaged enamel, a new concept in cavity prevention, and restoration or even the production of replacement teeth.

The gene, called Ctip2, is a "transcription factor" that was already known to have several functions - in immune response, and the development of skin and the nervous system. Scientists can now add tooth development to that list.

The findings were just published in the Proceedings of the National Academy of Sciences.

"It's not unusual for a gene to have multiple functions, but before this we didn't know what regulated the production of tooth enamel," said Chrissa Kioussi, an assistant professor in the College of Pharmacy at Oregon State University. "This is the first transcription factor ever found to control the formation and maturation of ameloblasts, which are the cells that secrete enamel."

The researchers used a laboratory mouse model in this study in which this gene has been "knocked out" and its protein is missing. Such mice lack basic biological systems and cannot live after birth, but allow scientists to study what is there, and what's missing.

In this case, the mice had rudimentary teeth ready to erupt, but they lacked a proper enamel coating, and never would have been functional.

"Enamel is one of the hardest coatings found in nature, it evolved to give carnivores the tough and long-lasting teeth they needed to survive," Kioussi said.

With an understanding of its genetic underpinning, Kioussi said, it may be possible to use tooth stem cells to stimulate the growth of new enamel. Some groups are already having success growing the inner portions of teeth in laboratory animal experiments, but those teeth have no hard coatings – the scientists lacked the genetic material that makes enamel.

"A lot of work would still be needed to bring this to human applications, but it should work," Kioussi said. "It could be really cool, a whole new approach to dental health."

Many people have problems with eroded tooth enamel, including people who smoke, drink and especially some who use illegal drugs such as methamphetamine. And most cavities start as a hole in tooth enamel that allows decay to begin.

Chrissa Kioussi | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>