The genetic differences between yeasts of the same species are greater than those between humans and chimpanzees

This is one of the findings of a study from the University of Gothenburg that is being published in the scientific journal Nature. This study heralds a new era in evolutionary genetics research – the mapping of an individual's DNA.

The mapping of the entire yeast genome in 1996 marked the beginning of a revolution in biological and medical research. The human genome was mapped in 2001, and by now the number of characterised species is approaching 1000, most of which are bacteria. The next advance is only a few years away – mapping the genetic evolution of individual multicellular animals, including humans.

“We shall then be able to identify the genetic causes of human disease and to understand how the process of evolution works when species are being formed,” says Anders Blomberg, professor at the Department of Cell and Molecular Biology, University of Gothenburg.

Anders Blomberg and his colleague Jonas Warringer are publishing a paper in the highly respected scientific journal Nature, that to some extent leads into a new era in evolutionary and functional genetics research. The lowly yeast is, once again, leading the way.

In collaboration with the Sanger Institute in Cambridge, and the University of Nottingham, the Gothenburg researchers have succeeded in sequencing the DNA and characterising the genome properties (i.e. phenotypes) of 70 different individual organisms from two different species of yeast – the common brewer's yeast Saccharomyces cerevisiae and its evolutionary cousin Saccharomyces paradoxus. The paper presents several interesting conclusions, e.g. that human alcohol consumption has altered yeast DNA.

“As humans transported wine and beer yeasts around the world, different yeasts have mated and recombined, so that the strains of today carry gene variants from various parts of the world. This mosaic pattern is not at all visible in our studies of another yeast that has not been exploited by humans,” says Anders Blomberg.

The study also shows that there can be greater genetic differences between individuals within a particular species of yeast than there are between humans and chimpanzees. The DNA of individual yeast organisms can vary by up to 4 per cent, compared to the 1 per cent difference between the DNA of humans and chimpanzees.

Another interesting observation is that individual organisms from the same species can have extra genetic material. Most of these “extra genes” occur at the periphery of the chromosome (the telomer region), which lends support to the theory that these areas are very important in evolution.

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors