Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic differences that make some people susceptible to meningitis revealed in major new study

09.08.2010
Genetic differences that make some people susceptible to developing meningococcal meningitis and septicaemia, and others naturally immune, are revealed in a new study of over 6,000 people, published today in Nature Genetics.

The research, led by Imperial College London and the Genome Institute of Singapore, is the largest ever genetic study of meningitis and septicaemia caused by meningococcal bacteria. It suggests that people who develop these diseases have innate differences in their natural defences that leave them unable to attack meningococcal bacteria successfully.

Although several different bacteria and viruses cause meningitis, meningococcal bacteria cause one of the most devastating forms of the disease - meningococcal meningitis, which is fatal in approximately one in ten cases. Meningococcal septicaemia is a type of blood poisoning that often accompanies this form of meningitis.

Meningococcal meningitis and septicaemia most commonly affect babies, young children, teenagers and young adults. The diseases are frightening because they can strike rapidly, with people becoming critically ill within hours.

There are vaccines available against some strains of meningococcal bacteria but not others. The researchers hope that their new findings will boost the development of effective vaccines to combat the group B strain of the bacteria, for which there is currently no vaccine. Every year, this strain causes thousands of deaths in children and adults across the world.

Most people carry the meningococcal bacteria in their throat intermittently during their lives without ever developing the disease. Prior to today's study, it has not been known why some people in the population develop meningococcal meningitis and septicaemia while others appear to be naturally immune to the bacteria.

Today's study compared the genetic makeup of 1,500 people who developed meningococcal meningitis, from the UK, Holland, Austria and Spain, with over 5,000 healthy controls from the Wellcome Trust Case Control Consortium. It was supported by the Wellcome Trust, Meningitis Research Foundation UK and the European Society for Paediatric Infectious Diseases.

Researchers looked at half a million common genetic variants scattered across each person's genome, and searched for differences between the patients with meningococcal disease and healthy controls. The results revealed that those who had developed meningococcal meningitis had genetic markers in a number of genes involved in attacking and killing invading bacteria.

Professor Michael Levin, from the Department of Paediatrics at Imperial College London, who led the international research effort, said: "Although most of us have carried the meningitis bacteria at some point, only around one in 40,000 people develop meningococcal meningitis. Our study set out to understand what causes this small group of people to become very ill whilst others remain immune. Our findings provide the strongest evidence so far that there are genetic factors that lead to people developing meningitis."

Dr Victoria Wright from the Department of Paediatrics at Imperial College London, who co-ordinated patient recruitment for the study across four European countries, added: "Meningococcal disease is a terrible illness as it strikes healthy children and adults suddenly, and can kill in a few hours. Improving our understanding of why some people get the disease and not others will help to identify those at risk and develop better vaccines. The success of the study was due to the willingness of patients and families to contribute their DNA for analysis, and it could not have been achieved without international collaboration."

The variations uncovered in the study were around the genes for Factor H and Factor H-related proteins. These proteins regulate a part of the body's immune system called the complement system, which recognises and kills invading bacteria.

Normally, Factor H and Factor H-related proteins ensure that the complement system does not cause excessive damage to the body's own cells. However, meningococcal bacteria can hijack the body's Factor H and use it to ensure that the body does not recognise the bacteria as foreign. The bacteria effectively use Factor H as a 'Trojan Horse,' enabling them to evade the body's defences and preventing the immune system from killing them.

The researchers are now keen to investigate precisely how the genetic variations that they have uncovered affect the activity of Factor H and Factor H-related proteins.

This study involved collaboration between researchers at Imperial College London and clinicians at Imperial College Healthcare NHS Trust, as part of the Academic Health Science Centre (AHSC), a unique kind of partnership between the College and the Trust, formed in October 2007. The AHSC's aim is to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

Other institutions involved in the study were the Alder Hey Children's Hospital, the Genome Institute of Singapore, and other children's centres in the UK, Holland, Austria and Spain.

Laura Gallagher | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>