Genetic damage in minibacteria in aphids and ants repaired by faulty copying

Now, in an article in the journal Proceedings of the National Academy of Sciences, PNAS, Uppsala researchers are presenting experimental findings that show that repeated errors in the conversion of DNA to protein save the function of the damaged genes.

Many insects, such as aphids, ants, and tse-tse flies are dependent on special minibacteria for their survival. These bacteria live isolated in special organs in the insects? bodies and are packed into their eggs to be spread to the next generation of insects. In this closed environment a great deal of genetic damage takes place, and the minibacteria?s genes are successively degraded.

Genetic damage arises during copying of the DNA string in the mother cell to the new DNA strings in the daughter cells. DNA is made up of four letters-?A, C, G, T. During copying of the same letter in a row, errors easily occur: for example, 10A can be erroneously copied as 9A or 11A or 12A. If such an error occurs in a gene, the reading frame is destroyed, and the gene loses its function. It is extremely uncommon for bacteria to have long series of the same letter in their genes. The minibacteria that live in insects, on the other hand, can surprisingly have hundreds of such regions in their genes. In several cases these regions have accumulated genetic mutations and the genes have popped out of their reading frame.

“Theoretically speaking, these damaged genes should no longer be able to function”, says Siv Andersson.

In the new study, the scientists have shown that despite their damage these genes become protein. The secret lies in the fact that new errors occur during copying of DNA to RNA, so a mixture of RNA molecules with 9A, 10A, 11A, and 12A is formed. Owing to the new errors, in some cases the original damage is repaired, and the gene pops back into its proper reading frame so that protein can be created.

“The result is a robust but extremely inefficient system. The major share of the copied material is useless and will be degraded. But thanks to the small proportion that turn out right as a result of the repeated copying errors, the bacteria can survive, thereby making it possible for the aphids and ants to survive”, says Siv Andersson.

These findings are of value to experiments being carried out around the world in attempts to use engineering to create minibacteria using artificial genetic material.

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors