Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic Conflict in Fish Led to Evolution of New Sex Chromosomes

University of Maryland biologists have genetically mapped the sex chromosomes of several species of cichlid (pronounced "sick-lid") fish from Lake Malawi, East Africa, and identified a mechanism by which new sex chromosomes may evolve.

In research published in the journal Science (October 1, 2009), Professor Thomas D. Kocher, Department of Biology, College of Chemical and Life Sciences; Reade Roberts, post-doctoral associate; and Jennifer Ser, research associate, describe the genetic basis for two co-existing systems of sexual determination in cichlid fish from Lake Malawi.

In nearly all mammals, the gene that determines the sex of offspring is located on the Y chromosome, which is much smaller than the X chromosome. But in many other animal groups, the genetic mechanism of sex determination evolves quite rapidly, and the differences between sex chromosomes are harder to observe. Even sister species of fish may have entirely different sex determination systems. How and why the genetic mechanisms for such an ancient developmental distinction continue to evolve has remained a mystery. The thousands of closely related cichlid fishes in the lakes of East Africa turn out to be an excellent model system for understanding how the mechanisms of how sex determination evolve.

The East African cichlid fishes that inhabit Lakes Malawi, Tanganyika, and Victoria are known for their sexually distinct appearance – the males are generally conspicuous and brightly colored, making them more attractive to females, while the females are drab and brown, making them inconspicuous to predators. One exception to the uniformly brown pigmentation among female cichlids is the "orange blotch" pattern, which appears in some female cichlids that live in rocky areas of Lake Malawi. "We believe that the orange blotch color pattern emerged as a new mutation in females and has a selective advantage in providing an alternative form of camouflage," says Dr. Kocher, who has been leading research to identify the genetic basis for phenotypic differences in cichlids for the past 20 years, and who made the first crosses to map the gene responsible for this color pattern in 1993.

Depending on the surrounding natural background, this color pattern can help disguise female fish and help them avoid predation. However males who express this phenotype lack the species-specific color patterns used by females to select their mates. "This phenotype creates a sexual conflict because the allele is favored in females but not favored in males," explains Dr. Roberts, who fine mapped the gene. "In 'survival of the fittest,' the genes underlying a beneficial trait will increase in frequency, but this is an odd case where the trait is really good for females but really bad for males."

Using genomic techniques, Roberts identified the gene (pax7) that is responsible for this difference in color pattern. He found that the orange blotch (OB) allele that produces the variable pigmentation in females was dominant over the "brown barred" (BB) allele (that produces the more common brown pigmentation) and that it was located very near a female sex determiner (W). The genetic conflict that started over color was resolved by a new mutation that took over the sex determining function, and ensured that nearly all orange blotch fish are female.

"This study marries two evolutionary mysteries: the incredible diversity of fish in the lakes of East Africa and the genetic basis of sex determination," says Sam Scheiner, program director in the National Science Foundation (NSF)'s Division of Environmental Biology, which funded the research. "This study shows how simple genetic changes can lead to enormous biological diversity."

Kelly Blake | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>