Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic “Conductor” Involved With New Brain Cell Production in Adults

30.06.2011
A team of North Carolina State University researchers has discovered more about how a gene connected to the production of new brain cells in adults does its job. Their findings could pave the way to new therapies for brain injury or disease.

Most areas of the brain do not generate new brain cells, or neurons, after we are born. One exception is the olfactory bulb, the brain’s scent processor, which continually produces new neurons.

Dr. Troy Ghashghaei, assistant professor of neurobiology, had previously found a gene – known as Foxj1–connected to the production of an area inside the olfactory bulb where stem cells could form. Ghashghaei and his team discovered that Foxj1 was an “off switch” that told neuronal stem cells to stop reproducing and triggered the development of a stem cell “niche” in the olfactory bulbs.

However, further experiments with newly developed genetically modified mice unexpectedly revealed that a fraction of Foxj1-expressing cells actually functioned as stem cells. But they only did so until the mouse reached the age equivalent of a human toddler, not throughout adulthood. In addition, the number of neurons generated by these cells was much lower than expected, which led to more questions about its function.

“Essentially, the experiments we did weren’t giving us the numbers of neurons from Foxj1-expressing stem cells that we expected. We could have gotten disappointed with what may have been perceived as a road-block in our findings” says Ghashghaei. “If the gene was one that stem cells had to express in order to produce neurons, then we should have seen a greater number of neurons produced from the Foxj1-expressing stem cells. Instead, only about three percent of the olfactory neurons came from the Foxj1 stem cells. More importantly, we could not identify these unique neurons as belonging to known types of neurons in the olfactory system.”

These findings and subsequent experimentation helped the team discover that in addition to being an off switch, the Foxj1 cellular lineage (i.e., Foxj1 expressing cells and their descendents) performs an important function as a “conductor,” instructing the other stem cells in the olfactory bulb by secreting various molecules that affect the other stem cells’ behavior and ensure their correct development into neurons. So a small number of Foxj1-expressing cells and their neuronal offspring direct other stem cells to continue reproducing, and may be telling them when to become functionally integrated neurons.

The research appears in the Journal of Neuroscience. Graduate students Benoit Jacquet, Huixuan Liang, and Guanxi Xiao, together with postdoctoral fellows Nagendran Muthusamy and Laura Sommerville contributed to the work.

“This finding is important because for the most part our brains cannot generate new neurons, nor can we efficiently use transplanted neurons to repair damage,” Ghashghaei says. “Foxj1 expressing cells and their neurons seem to support zones within the brain where new neurons are created and integrated into existing neural circuits. If we can find out how to put these ‘conductor’ cells into other areas of the brain such as the spinal cord, it may lead to new cell-based therapies.

“This project took us on a roller-coaster ride – but the ending is a testament to the power of creative thinking and persistence in scientific inquiry – an achievement of which the clever and hardworking graduate students and postdoctoral fellows working on the problem should be very proud.”

Ghashghaei’s research is funded by the NIH and the American Federation for Aging Research. The Department of Molecular Biomedical Sciences is part of NC State’s College of Veterinary Medicine.

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>