Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic Code 2.0 - Novel Artificial Proteins for Industry and Science

The creation of synthetic proteins plays an important role for economy and science. By the integration of artificial amino acids in proteins (genetic code engineering), their already existing qualities can be systematically improved. Even new biological features can arise.

Now, scientists at the Max Planck Institute of Biochemistry (MPIB) in Martinsried near Munich, Germany, succeeded in making another important step in this research area: For the first time, they were able to integrate in a single experiment three different synthetic amino acids into one protein. (Angewandte Chemie, June 24, 2010).

Proteins are the main actors in our body: They transport substances, convey messages or carry out vital processes in their role as molecular machines. The “helmsmen of the cell” are composed of amino acids, whose sequence is already defined by the heritable information in every living being. The translation of this information during the production of proteins (protein synthesis) is determined by the genetic code. 20 amino acids form the standard set of which proteins are built. In natural conditions, however, several hundred amino acids can be found and, of course, new amino acids can also be produced in the laboratory. With regard to their properties, they differ from the 20 standard amino acids, because of which, by their integration in proteins, specific structural and biological characteristics of proteins can be systematically changed. So far, only one type of synthetic amino acid could be inserted into a protein during a single experiment in a residue-specific manner; thus, only one property of a protein could be modified at once.

Nediljko Budisa, head of the research group Molecular Biotechnology at the MPIB, has now made an important methodical progress in the area of genetic code engineering. The scientists were able to substitute three different natural amino acids by synthetic ones at the same time in a single experiment. The biochemist is pleased: “The research area of genetic code engineering and code extension reaches with this a new development phase.”

Budisa’s method could be of great importance particularly for the industry and economy because the production of artificial proteins by genetic code engineering in his view demonstrates a solid basis for the development of new technologies. “During integration, synthetic amino acids confer their characteristics to proteins. Thus, the development moves over totally new classes of products, whose chemical synthesis has not been possible so far by conventional protein engineering using only the 20 standard amino acids”, explains Budisa regarding to future prospects. “Thanks to our method, in the future it will be possible to tailor industrial relevant proteins with novel properties: for example proteins containing medical components.” [UD]

Original Publication:
S. Lepthien, L. Merkel, N. Budisa: In vivo double and triple labeling of proteins using synthetic amino acids. Angewandte Chemie, June 24, 2010.
Prof. Dr. Nediljko Budisa
Molecular Biotechnology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried, Germany
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried, Germany
Phone ++49/89-8578-2824

Anja Konschak | Max-Planck-Institut
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>