Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic cause of cardiac failure discovered

27.11.2009
Unstable structural elements of the heart muscle lead to heart failure / Heidelberg cardiologists publish in Nature Medicine

Over the course of a lifetime, the heart pumps some 250 million liters of blood through the body. In the order to do this, the muscle fibers of the heart have to be extremely durable. The research group headed by Dr. Wolfgang Rottbauer, vice chair of the Department of Medicine III at Heidelberg University Hospital (Chairman: Prof. Dr. H. A. Katus), has discovered a protein that is responsible for the stability of the smallest muscular unit, the sarcomere.

In cooperation with other researchers within the National Genome Research Network (NGFN) which is funded by the German Federal Ministery of Education and Research, especially Prof. Dr. H. Schunkert from the University of Lübeck and Prof. Dr. M. Stoll from the University of Münster, they proved that mutations of this protein are the cause of a new type of heart failure. The results have been published in the November issue of Nature Medicine.

Primary heart muscle disease with decreased cardiac pump function leading to enlargement of the heart chambers (dilated cardiomyopathy) is one of the most frequent causes of chronic heart failure. Six new cases per 100,000 people occur each year; 20 percent of these cases are genetic. The heart disease weakens cardiac cells and the heart can no longer pump efficiently which leads to dilation of the cardiac chambers.

Muscle activity takes place in the smallest unit of muscle fiber, the sarcomere. In the presence of an appropriate stimulus, actin and myosin filaments interact and contract the muscle. These movable elements are anchored in what are known as Z-disks. With every heartbeat, enormous forces act on the Z-disks.

Torn Z disks weaken the heart

“In our studies of zebrafish, we discovered a protein that is needed to stabilize the Z-disk. If this protein (nexilin) is mutated, the movable muscle elements are no longer anchored firmly enough. The muscles then lose strength and the heart is weakened,” explains Dr. Tillman Dahme, resident and co-author of the study. The researchers examined the genetic material of affected patients and verified a mutated Z-disk protein in 9 of 1000 participants. They showed that in these patients, the defective nexilin was the major cause of heart disease. “The nexilin dilated cardiomyopathy allowed us for the first time to describe a new form of heart muscle dilatation and define the mechanism causing it, namely destabilization of the Z-disk,” says Dahme.

The studies also showed that the extent of the damage to the Z-disk is directly related to the workload. This insight has an influence on clinical therapy. “Patients with a nexilin mutation might benefit from early treatment with medications that reduce cardiac stress. This could lower the mechanical stress on the Z-disks and prevent progressive damage to the heart,” said Dr. Rottbauer.

Literature:

Nexilin mutations destabilize cardiac Z-disks and lead to dilated cardiomyopathy. David Hassel, Tillman Dahme, Jeanette Erdmann, Benjamin Meder, Andreas Huge, Monika Stoll, Steffen Just, Alexander Hess, Philipp Ehlermann, Dieter Weichenhan, Matthias Grimmler, Henrike Liptau, Roland Hetzer, Vera Regitz-Zagrosek, Christine Fischer, Peter Nürnberg, Heribert Schunkert, Hugo A Katus & Wolfgang Rottbauer, Nature Medicine 15, 1281 - 1288 (2009), published online 1 Nov 2009, DOI 10.1038/nm.2037

Contact person:
PD Dr. med. Wolfgang Rottbauer
Department of Medicine III – Cardiology
Heidelberg University Hospital
Im Neuenheimer Feld 410
69120 Heidelberg
phone: +49 6221 / 56 38851
fax: +49 6221 / 56 48 66
e-mail: wolfgang.rottbauer@med.uni-heidelberg.de
Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching
Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 7,000 employees, training and qualification is an important issue. Every year, around 500,000 patients are treated on an inpatient or outpatient basis in more than 40 clinics and departments with 1,600 beds. Currently, about 3,100 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.

Requests by journalists:

Dr. Annette Tuffs
Head of Public Relations and Press Department
University Hospital of Heidelberg and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
D-69120 Heidelberg
Germany
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Wolfgang Rottbauer | EurekAlert!
Further information:
http://dx.doi.org/10.1038/nm.2037
http://www.klinikum.uni-heidelberg.de/Rottbauer-Lab.110535.0.html?&L=en

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>