Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic cause of cardiac failure discovered

27.11.2009
Unstable structural elements of the heart muscle lead to heart failure / Heidelberg cardiologists publish in Nature Medicine

Over the course of a lifetime, the heart pumps some 250 million liters of blood through the body. In the order to do this, the muscle fibers of the heart have to be extremely durable. The research group headed by Dr. Wolfgang Rottbauer, vice chair of the Department of Medicine III at Heidelberg University Hospital (Chairman: Prof. Dr. H. A. Katus), has discovered a protein that is responsible for the stability of the smallest muscular unit, the sarcomere.

In cooperation with other researchers within the National Genome Research Network (NGFN) which is funded by the German Federal Ministery of Education and Research, especially Prof. Dr. H. Schunkert from the University of Lübeck and Prof. Dr. M. Stoll from the University of Münster, they proved that mutations of this protein are the cause of a new type of heart failure. The results have been published in the November issue of Nature Medicine.

Primary heart muscle disease with decreased cardiac pump function leading to enlargement of the heart chambers (dilated cardiomyopathy) is one of the most frequent causes of chronic heart failure. Six new cases per 100,000 people occur each year; 20 percent of these cases are genetic. The heart disease weakens cardiac cells and the heart can no longer pump efficiently which leads to dilation of the cardiac chambers.

Muscle activity takes place in the smallest unit of muscle fiber, the sarcomere. In the presence of an appropriate stimulus, actin and myosin filaments interact and contract the muscle. These movable elements are anchored in what are known as Z-disks. With every heartbeat, enormous forces act on the Z-disks.

Torn Z disks weaken the heart

“In our studies of zebrafish, we discovered a protein that is needed to stabilize the Z-disk. If this protein (nexilin) is mutated, the movable muscle elements are no longer anchored firmly enough. The muscles then lose strength and the heart is weakened,” explains Dr. Tillman Dahme, resident and co-author of the study. The researchers examined the genetic material of affected patients and verified a mutated Z-disk protein in 9 of 1000 participants. They showed that in these patients, the defective nexilin was the major cause of heart disease. “The nexilin dilated cardiomyopathy allowed us for the first time to describe a new form of heart muscle dilatation and define the mechanism causing it, namely destabilization of the Z-disk,” says Dahme.

The studies also showed that the extent of the damage to the Z-disk is directly related to the workload. This insight has an influence on clinical therapy. “Patients with a nexilin mutation might benefit from early treatment with medications that reduce cardiac stress. This could lower the mechanical stress on the Z-disks and prevent progressive damage to the heart,” said Dr. Rottbauer.

Literature:

Nexilin mutations destabilize cardiac Z-disks and lead to dilated cardiomyopathy. David Hassel, Tillman Dahme, Jeanette Erdmann, Benjamin Meder, Andreas Huge, Monika Stoll, Steffen Just, Alexander Hess, Philipp Ehlermann, Dieter Weichenhan, Matthias Grimmler, Henrike Liptau, Roland Hetzer, Vera Regitz-Zagrosek, Christine Fischer, Peter Nürnberg, Heribert Schunkert, Hugo A Katus & Wolfgang Rottbauer, Nature Medicine 15, 1281 - 1288 (2009), published online 1 Nov 2009, DOI 10.1038/nm.2037

Contact person:
PD Dr. med. Wolfgang Rottbauer
Department of Medicine III – Cardiology
Heidelberg University Hospital
Im Neuenheimer Feld 410
69120 Heidelberg
phone: +49 6221 / 56 38851
fax: +49 6221 / 56 48 66
e-mail: wolfgang.rottbauer@med.uni-heidelberg.de
Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching
Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 7,000 employees, training and qualification is an important issue. Every year, around 500,000 patients are treated on an inpatient or outpatient basis in more than 40 clinics and departments with 1,600 beds. Currently, about 3,100 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.

Requests by journalists:

Dr. Annette Tuffs
Head of Public Relations and Press Department
University Hospital of Heidelberg and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
D-69120 Heidelberg
Germany
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Wolfgang Rottbauer | EurekAlert!
Further information:
http://dx.doi.org/10.1038/nm.2037
http://www.klinikum.uni-heidelberg.de/Rottbauer-Lab.110535.0.html?&L=en

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>