Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the genetic blueprints for limbs came from fish

22.01.2014
A study led by Denis Duboule shows that these appendages have emerged during evolution by modernisation of a preexisting DNA structure

The transition from water to land is one of the most fascinating enigmas of evolution. In particular, the evolution of limbs from ancestral fish fins remains a mystery.


This shows the expression of fish Hox genes in a mouse embryo.

Credit: Denis Duboule, UNIGE

Both fish and land animals possess clusters of Hoxa and Hoxd genes, which are necessary for both fin and limb formation during embryonic development. Denis Duboule's team, at the UNIGE and the EPFL, Switzerland, compared the structure and behavior of these gene clusters in embryos from mice and zebrafish.

The researchers discovered similar 3-dimensional DNA organization of the fish and mouse clusters, which indicates that the main mechanism used to pattern tetrapod limbs was already present in fish. However, when inserted into transgenic mouse embryos, the fish Hox genes were only active in the mouse arm but not in the digits, showing that the fish DNA lacks essential genetic elements for digit formation.

The study, published in the January 21, 2014 edition of PLoS Biology, thus concludes that, although the digital part of the limbs evolved as a novelty in land animals, this happened by elaborating on an ancestral, pre-existing DNA infrastructure.

Our first four-legged land ancestor came out of the sea some 350 million years ago. Watching a lungfish, our closest living fish relative, crawl on its four pointed fins gives us an idea of what the first evolutionary steps on land probably looked like. However, the transitional path between fin structural elements in fish and limbs in tetrapods remains elusive.

An ancestral regulatory strategy …

In animals, the Hox genes, often referred to as 'architect genes', are responsible for organizing the body structures during embryonic development. Both fish and mammals possess clusters of Hoxa and Hoxd genes, which are necessary for fin and limb formation. The team of Denis Duboule, professor at the University of Geneva (UNIGE) and the Ecole polytechnique fédérale de Lausanne (EPFL), Switzerland, had recently shown that, during mammalian development, Hoxd genes depend on a 'bimodal' 3-dimensional DNA structure to direct the development of the characteristic subdivision of the limbs into arm and paw, a division which is absent from fish fins.

'To determine where the genetics behind this subdivision into 'hand' and 'arm' came from during evolution, we decided to closely compare the genetic processes at work in both fin and limb development', says Joost Woltering, researcher at the Department of Genetics and

Evolution of the UNIGE Faculty of Science and lead author of the study. Surprisingly, the researchers found a similar bimodal 3-dimensional chromatin architecture in the Hoxd gene region in zebrafish embryos. These findings indicate that the regulatory mechanism used to pattern tetrapod limbs probably predates the divergence between fish and tetrapods. "In fact this finding was a great surprise as we expected that this 'bimodal' DNA conformation was exactly what would make all the difference in the genetics for making limbs or making fins" adds Joost Woltering.

…that just needs to be modernized

Does this imply that digits are homologous to distal fin structures in fish? To answer this question, the geneticists inserted into mice embryos the genomic regions that regulate Hox gene expression in fish fins. 'As another surprise, regulatory regions from fish triggered

Hox gene expression predominantly in the arm and not in the digits. Altogether, this suggests that our digits evolved during the fin to limb transition by modernizing an already existing regulatory mechanism', explains Denis Duboule.

'A good metaphor for what has probably happened would be the process of 'retrofitting', as is done in engineering to equip outdated machine frames with new technology. Only, in this case, it was a primitive DNA architecture which evolved new 'technology' to make the fingers and toes', says Joost Woltering.

Fin radials are not homologous to tetrapod digits

The researchers conclude that, although fish possess the Hox regulatory toolkit to produce digits, this potential is not utilized as it is in tetrapods. Therefore, they propose that fin radials, the bony elements of fins, are not homologous to tetrapod digits, although they rely in part on a shared regulatory strategy.

New lines of investigation are to find out exactly what has changed between the DNA elements in fish and tetrapods. 'By now we know a lot of genetic switches in mice that drive Hox expression in the digits. It is key to find out exactly how these processes work nowadays to understand what made digits appear and favor the colonization of the terrestrial environment', concludes Denis Duboule.

Denis Duboule | EurekAlert!
Further information:
http://www.unige.ch

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>