Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the genetic blueprints for limbs came from fish

22.01.2014
A study led by Denis Duboule shows that these appendages have emerged during evolution by modernisation of a preexisting DNA structure

The transition from water to land is one of the most fascinating enigmas of evolution. In particular, the evolution of limbs from ancestral fish fins remains a mystery.


This shows the expression of fish Hox genes in a mouse embryo.

Credit: Denis Duboule, UNIGE

Both fish and land animals possess clusters of Hoxa and Hoxd genes, which are necessary for both fin and limb formation during embryonic development. Denis Duboule's team, at the UNIGE and the EPFL, Switzerland, compared the structure and behavior of these gene clusters in embryos from mice and zebrafish.

The researchers discovered similar 3-dimensional DNA organization of the fish and mouse clusters, which indicates that the main mechanism used to pattern tetrapod limbs was already present in fish. However, when inserted into transgenic mouse embryos, the fish Hox genes were only active in the mouse arm but not in the digits, showing that the fish DNA lacks essential genetic elements for digit formation.

The study, published in the January 21, 2014 edition of PLoS Biology, thus concludes that, although the digital part of the limbs evolved as a novelty in land animals, this happened by elaborating on an ancestral, pre-existing DNA infrastructure.

Our first four-legged land ancestor came out of the sea some 350 million years ago. Watching a lungfish, our closest living fish relative, crawl on its four pointed fins gives us an idea of what the first evolutionary steps on land probably looked like. However, the transitional path between fin structural elements in fish and limbs in tetrapods remains elusive.

An ancestral regulatory strategy …

In animals, the Hox genes, often referred to as 'architect genes', are responsible for organizing the body structures during embryonic development. Both fish and mammals possess clusters of Hoxa and Hoxd genes, which are necessary for fin and limb formation. The team of Denis Duboule, professor at the University of Geneva (UNIGE) and the Ecole polytechnique fédérale de Lausanne (EPFL), Switzerland, had recently shown that, during mammalian development, Hoxd genes depend on a 'bimodal' 3-dimensional DNA structure to direct the development of the characteristic subdivision of the limbs into arm and paw, a division which is absent from fish fins.

'To determine where the genetics behind this subdivision into 'hand' and 'arm' came from during evolution, we decided to closely compare the genetic processes at work in both fin and limb development', says Joost Woltering, researcher at the Department of Genetics and

Evolution of the UNIGE Faculty of Science and lead author of the study. Surprisingly, the researchers found a similar bimodal 3-dimensional chromatin architecture in the Hoxd gene region in zebrafish embryos. These findings indicate that the regulatory mechanism used to pattern tetrapod limbs probably predates the divergence between fish and tetrapods. "In fact this finding was a great surprise as we expected that this 'bimodal' DNA conformation was exactly what would make all the difference in the genetics for making limbs or making fins" adds Joost Woltering.

…that just needs to be modernized

Does this imply that digits are homologous to distal fin structures in fish? To answer this question, the geneticists inserted into mice embryos the genomic regions that regulate Hox gene expression in fish fins. 'As another surprise, regulatory regions from fish triggered

Hox gene expression predominantly in the arm and not in the digits. Altogether, this suggests that our digits evolved during the fin to limb transition by modernizing an already existing regulatory mechanism', explains Denis Duboule.

'A good metaphor for what has probably happened would be the process of 'retrofitting', as is done in engineering to equip outdated machine frames with new technology. Only, in this case, it was a primitive DNA architecture which evolved new 'technology' to make the fingers and toes', says Joost Woltering.

Fin radials are not homologous to tetrapod digits

The researchers conclude that, although fish possess the Hox regulatory toolkit to produce digits, this potential is not utilized as it is in tetrapods. Therefore, they propose that fin radials, the bony elements of fins, are not homologous to tetrapod digits, although they rely in part on a shared regulatory strategy.

New lines of investigation are to find out exactly what has changed between the DNA elements in fish and tetrapods. 'By now we know a lot of genetic switches in mice that drive Hox expression in the digits. It is key to find out exactly how these processes work nowadays to understand what made digits appear and favor the colonization of the terrestrial environment', concludes Denis Duboule.

Denis Duboule | EurekAlert!
Further information:
http://www.unige.ch

More articles from Life Sciences:

nachricht Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria
29.05.2015 | Carnegie Institution

nachricht Scientists use unmanned aerial vehicle to study gray whales from above
29.05.2015 | NOAA National Marine Fisheries Service

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>