Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic 'barcode' for malaria could help contain outbreaks

13.06.2014

A new genetic 'barcode' for malaria parasites has been found which could be used to track and contain the spread of the disease, according to new research led by the London School of Hygiene & Tropical Medicine

A new genetic 'barcode' for malaria parasites has been found which could be used to track and contain the spread of the disease, according to new research led by the London School of Hygiene & Tropical Medicine.

Malaria kills around 600,000 people per year, and increased population mobility through international air travel carries further risks of re-introducing parasites to elimination areas and dispersing drug-resistant parasites to new regions. A simple genetic marker that quickly and accurately identifies the geographic origin of infections would be a valuable tool for locating the source of outbreaks, and spotting the spread of drug-resistant parasites from Asia to Africa.

New research published in Nature Communications has found a highly predictive barcode in the genetic sequence of the malaria parasite Plasmodium falciparum which can be used to identify the geographic origin of a parasite from a blood sample and monitor its spread.

The researchers from the London School of Hygiene & Tropical Medicine analysed the DNA of over 700 P. falciparum malaria parasites taken from patients in 14 countries in West Africa, East Africa, South East Asia, Oceania and South America. They found several short genetic sequences which were distinct in the DNA of parasites from certain geographic regions, which allowed them to design a genetic 'barcode' to be used in identifying the source of new infections.

Lead author Dr Taane Clark, Reader in Genetic Epidemiology and Statistics at the London School of Hygiene & Tropical Medicine, said: "Being able to determine the geographic origin of malaria parasites has enormous potential in containing drug-resistance and eliminating malaria. Our work represents a breakthrough in the genetic barcoding of P. falciparum, as it reveals very specific and accurate sequences for different geographic settings. We are currently extending the barcode to include other populations, such as India, Central America, southern Africa and the Caribbean, and plan to include genetic markers for other types malaria, such as P. vivax."

Genetic markers have proved extremely valuable in tracking and eradicating diseases, such as polio. However, previous candidates for malaria genetic barcodes have relied on identifying DNA markers found in the parasite's cell nucleus, which shows too much genetic variation between individual parasites to be used accurately.

Now for the first time, the researchers studied the DNA found in two parts of the parasite's cells outside of the nucleus. The mitochondria (the 'power houses' of the cell) and the apicolasts (used in the cell's metabolism) are only inherited through maternal lines and so their genes remain much more stable over generations, and have therefore often been used as tools to explore the origins of humans.

By identifying short sequences in the DNA of the parasite's mitochondria and apicoplasts which were found to be specific for different geographic locations, the team were able to design a highly accurate genetic barcode (92% predictive) which is stable and geographically informative over time.

Study co-author Dr Cally Roper, Senior Lecturer in Malaria Genetics from the London School of Hygiene & Tropical Medicine, said: "By taking finger-prick bloodspots from malaria patients and using rapid gene sequencing technologies on small amounts of parasite material, local agencies could use this new barcode to quickly and accurately identify where a form of the parasite may have come from, and help in programmes of malaria elimination and resistance containment."

The authors say this barcode is limited as the current study lacks representation of the Indian sub-continent, Central America, southern Africa and the Caribbean, owing to the scarcity of sequence data from these regions. In addition, there is a need to study more samples from East Africa, a region of high genetic diversity, high migration and poor predictive ability.

###

To request a copy of the paper or to interview the authors, please contact Joel Winston in the London School of Hygiene & Tropical Medicine press office on press@lshtm.ac.uk or +44(0)207 927 2802.

Authors are available for interview up to the end of Friday 13 June.

Notes to Editors:

Paper reference: Mark D. Preston et al. A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains. Nature Communications. DOI: 10.1038/ncomms5052

If you wish to provide a link to this paper for your readers, please use the following, which will go live at the time the embargo lifts: http://dx.doi.org/10.1038/ncomms5052

About the London School of Hygiene & Tropical Medicine

The London School of Hygiene & Tropical Medicine is a world-leading centre for research and postgraduate education in public and global health, with 3,900 students and more than 1,000 staff working in over 100 countries. The School is one of the highest-rated research institutions in the UK, and was recently cited as the world's leading research-focused graduate school. Our mission is to improve health and health equity in the UK and worldwide; working in partnership to achieve excellence in public and global health research, education and translation of knowledge into policy and practice. http://www.lshtm.ac.uk

Joel Winston | Eurek Alert!

Further reports about: DNA Genetic Hygiene Medicine drug-resistant falciparum malaria parasite parasites sequences

More articles from Life Sciences:

nachricht Aromatic couple makes new chemical bonds
30.06.2015 | Institute of Transformative Bio-Molecules (ITbM), Nagoya University

nachricht Breaking through a double wall with a sledgehammer
29.06.2015 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

3D Plasmonic Antenna Capable of Focusing Light into Few Nanometers

30.06.2015 | Physics and Astronomy

X-rays and electrons join forces to map catalytic reactions in real-time

30.06.2015 | Physics and Astronomy

A polarizing view

30.06.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>