Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic analyses reveal novel mutations as causes of startle disease

08.08.2012
2 separate studies identify gene defects that affect how the brain responds to startling events, sometimes with fatal consequences

Two studies published in the Journal of Biological Chemistry identify genetic mutations that play important roles in the condition commonly referred to as startle disease. Startle disease is characterized by an exaggerated response to noise and touch, which can interfere with breathing, cause catastrophic falls and even result in death.

The newly identified genetic mutations affect how the signaling molecule glycine, which is responsible for sending messages between nerve cells, is both moved around and used in these cells.

Startle disease, or hyperekplexia, emerges after birth, and while the symptoms usually diminish they sometimes continue into adulthood. The abnormal startle response is caused by glitches in glycine signaling.

Glycine is a small amino acid with various roles in the cell, one of which is to transmit inhibitory signals between nerve cells. In startle disease, defective proteins prevent cells from receiving the inhibitory signals that normally control a person's response to noise and touch. The result is the amplified, harmful response.

Startle disease is caused by mutations in multiple genes that encode proteins involved in glycine signaling. For example, one well-known cause is mutation of the glycine receptor alpha1 subunit gene.

But many cases do not involve that gene or the handful of others that have been given close scrutiny, according to Robert Harvey at University College London, one of the JBC authors. Working together with Mark Rees at the Institute of Life Science, Swansea University, another prominent cause of startle disease was discovered – mutations in the gene for a glycine transporter known as GlyT2.

Rees' group performed genetic analyses of 93 patients across the globe and identified 19 new recessive mutations in GlyT2. Experiments using molecular models and cell lines in Harvey's group showed that these mutations resulted either in the loss or reduction of glycine uptake by GlyT2.

"Our study represents the largest multicenter screening study for GlyT2 mutations in hyperekplexia to date," the authors wrote in their paper. They went on to say the work triples the number of known cases with these mutations, "firmly establishing mutations in the GlyT2 gene as a second major cause of startle disease."

In the other JBC paper, Beatriz López-Corcuera at the Universidad Autónoma de Madrid in collaboration with Cecilio Giménez and Pablo Lapunzina´s groups at the IdiPAZ-Hospital Universitario La Paz and colleagues report another novel genetic mutation in GlyT2 as the cause of startle disease in eight patients from Spain and the United Kingdom.

López-Corcuera said: "The mutation that we discovered is the first common dominant mutation in the GlyT2 gene," meaning that inheritance of a single defective copy of the gene causes disease.

The team found that the mutation hindered proper expression of the GlyT2 transporter at the cell membrane and changed how GlyT2 itself functions.

López-Corcuera explains that this GlyT2 mutation reduces glycine uptake, which decreases the amount of glycine subsequently released and ultimately hinders transmission of the inhibitory signal. López-Corcuera suggests that these results may explain the symptoms observed in the patients and "could be useful for future pharmacological approaches."

From the articles:

"A novel dominant hyperekplexia mutation Y705C alters trafficking and biochemical properties of the presynaptic glycine transporter GlyT2" by Cecilio Giménez, Gonzalo Pérez-Siles, Jaime Martínez- Villarreal, Esther Arribas-González, Esperanza Jiménez, Enrique Núñez, Jaime de Juan-Sanz, Enrique Fernández-Sánchez, Noemí García-Tardón, Ignacio Ibáñez, Valeria Romanelli, Julián Nevado, Victoria M James, Maya Topf, Seo-Kyung Chung, Rhys H Thomas, Lourdes R Desviat, Carmen Aragón, Francisco Zafra, Mark I Rees, Pablo Lapunzina, Robert J Harvey, and Beatriz López- Corcuera

Corresponding author: Beatriz López-Corcuera, Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid in Madrid, Spain; e-mail: blopez@cbm.uam.es

"Mutations in the GlyT2 gene (SLC6A5) are a second major cause of startle disease" by Eloisa Carta, Seo-Kyung Chung, Victoria M. James, Angela Robinson, Jennifer L. Gill, Nathalie Remy, Jean-François Vanbellinghen, Cheney J.G. Drew, Sophie Cagdas, Duncan Cameron, Frances M. Cowan, Mireria Del Toro, Gail E. Graham, Adnan Y. Manzur, Amira Masri, Serge Rivera, Emmanuel Scalais, Rita Shiang, Kate Sinclair, Catriona A. Stuart, Marina A.J. Tijssen, Grahame Wise, Sameer M. Zuberi, Kirsten Harvey, Brian R. Pearce, Maya Topf, Rhys H. Thomas, Stéphane Supplisson, Mark I. Rees and Robert J. Harvey

Corresponding authors: Robert J. Harvey, Department of Pharmacology, University College London School of Pharmacy in London, United Kingdom; email: r.j.harvey@ucl.ac.uk; Mark I. Rees, Institute of Life Science, Swansea University in Swansea, United Kingdom; email: m.i.rees@swansea.ac.uk

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit www.asbmb.org.

Written by Danielle Gutierrez

Angela Hopp | EurekAlert!
Further information:
http://www.asbmb.org
http://www.ucl.ac.uk

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>