Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Adaptations Key to Microbe's Survival in Challenging Environment

12.02.2009
Genetic adaptations made by bacterium living in one of the world's most extreme environments could help us understand how life evolved.

The genome of a marine bacterium living 2,500 meters below the ocean's surface is providing clues to how life adapts in extreme thermal and chemical gradients, according to an article published Feb. 6 in the journal PLoS Genetics, an open-access publication published by the Public Library of Science.

The research focused on the bacterium Nautilia profundicola, a microbe that survives near deep-sea hydrothermal vents. Microorganisms that thrive at these geysers on the sea floor must adapt to fluctuations in temperature and oxygen levels, ranging from the hot, sulfide- and heavy metal-laden plume at the vents' outlets to cold seawater in the surrounding region.

The study combined genome analysis with physiological and ecological observations to investigate the importance of one gene in N. profundicola. That gene, called rgy, allows the bacterium to manufacture a protein called reverse gyrase when it encounters extremely hot fluids from the Earth's interior.

Previous studies found the gene only in microorganisms growing in temperatures greater than 80°C, but N. profundicola thrives best at much lower temperatures.

"The gene's presence in N. profundicola suggests that it might play a role in the bacterium's ability to survive rapid and frequent temperature fluctuations in its environment," said Assistant Professor of Marine Biosciences Barbara Campbell, the study's lead scientist.

Additional University of Delaware contributors were Professor of Marine Biosciences Stephen Craig Cary, Assistant Professor of Marine Biosciences Thomas Hanson, and Julie Smith, marine biosciences doctoral student. Also collaborating on the project were researchers from the Davis and Riverside campuses of the University of California; the University of Louisville; the University of Waikato in Hamilton, New Zealand; and the J. Craig Venter Institute in Rockville, Md.

The researchers also uncovered further adaptations to the vent environment, including genes necessary for growth and sensing environmental conditions, and a new route for nitrate assimilation related to how other bacteria use ammonia as an energy source. Photosynthesis cannot occur in the hydrothermal vents' dark environment, where hot, toxic fluids oozing from below the seafloor combine with cold seawater at very high pressures.

These results help to explain how microbes survive near the vents, where conditions are thought to resemble those found on early Earth. Nautilia profundicola contains all the genes necessary for life in conditions widely believed to mimic those in our planet's early biosphere and could aid in understanding of how life evolved.

"It will be an important model system," Campbell said, "for understanding early microbial life on Earth."

Elizabeth Boyle | Newswise Science News
Further information:
http://www.udel.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>