Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic abnormalities in benign or malignant tissues predict relapse of prostate cancer

07.05.2012
More efficient and accurate technique reported in the American Journal of Pathology

While active monitoring of serum prostate specific antigen (PSA) levels in men over 50 has greatly improved early detection of prostate cancer, prediction of clinical outcomes after diagnosis remains a major challenge.

Researchers from the University of Pittsburgh School of Medicine have found that a genetic abnormality known as copy number variation (CNV) in prostate cancer tumors, as well as in the benign prostate tissues adjacent to the tumor and in the blood of patients with prostate cancer, can predict whether a patient will experience a relapse, and the nature of the relapse — aggressive or indolent. Their report is published in the June issue of The American Journal of Pathology.

Copy number variations are large areas of the genome with either duplicated or missing sections of DNA. "Our analysis indicates that CNV occurred in both cancer and non-cancer tissues, and CNV of these tissues predicts prostate cancer progression," says lead investigator Jian-Hua Luo, MD, PhD, associate professor in the Divisions of Molecular and Cellular Pathology, and Anatomic Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine. "Prediction models of prostate cancer relapse, or of the rate of PSA level increase after surgery, were generated from specific CNV patterns in tumor or benign prostate tissues adjacent to cancer samples."

To detect the abnormalities, scientists conducted a comprehensive genome analysis on 238 samples obtained from men undergoing radical prostatectomy: 104 prostate tumor samples, 85 blood samples from patients with prostate cancer, and 49 samples of benign prostate tissues adjacent to a tumor. A third of the samples were from patients exhibiting recurrence with a PSA level increasing at a rapid rate, doubling in less than four months (rapid increases are associated with lethal prostate cancer); a third from patients exhibiting recurrence with a PSA level increasing at a slow rate, doubling time greater than 15 months; and a third with no relapse more than five years after surgery. Three commercially available prostate cancer cell lines were also tested to validate the results.

Deletions of large segments of specific chromosomes occurred with high frequency, whereas amplification of other chromosomes occurred in only a subset of prostate cancer samples. Similar amplification and deletion of the same regions also occurred in benign prostate tissue samples adjacent to the cancer. Prostate cancer patients' blood was found to contain significant CNVs. Most were not unique and overlapped with those of prostate cancer samples.

Using gene-specific CNV from tumor, the model correctly predicted 73% of cases for relapse and 75% of cases for short PSA doubling time. The CNV model from tissue adjacent to the prostate tumor correctly predicted 67% of cases for relapse and 77% of cases for short PSA doubling time. Using median-size CNV from blood, the genome model correctly predicted 81% of the cases for relapse and 69% of the cases for short PSA doubling time.

Dr. Luo notes that there are several potential clinical applications using CNV tests. "For a patient diagnosed with prostate cancer, CNV analysis done on blood or normal tissues would eliminate the need for additional invasive procedures to decide a treatment mode. For a patient already having a radical prostatectomy, CNV analysis on the tumor or blood sample may help to decide whether additional treatment is warranted to prevent relapse. Despite some limitations, including the need for high quality genome DNA, CNV analysis on the genome of blood, normal prostate, or tumor tissues holds promise to become a more efficient and accurate way to predict the behavior of prostate cancer."

David Sampson | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>