Genetic abnormalities in benign or malignant tissues predict relapse of prostate cancer

While active monitoring of serum prostate specific antigen (PSA) levels in men over 50 has greatly improved early detection of prostate cancer, prediction of clinical outcomes after diagnosis remains a major challenge.

Researchers from the University of Pittsburgh School of Medicine have found that a genetic abnormality known as copy number variation (CNV) in prostate cancer tumors, as well as in the benign prostate tissues adjacent to the tumor and in the blood of patients with prostate cancer, can predict whether a patient will experience a relapse, and the nature of the relapse — aggressive or indolent. Their report is published in the June issue of The American Journal of Pathology.

Copy number variations are large areas of the genome with either duplicated or missing sections of DNA. “Our analysis indicates that CNV occurred in both cancer and non-cancer tissues, and CNV of these tissues predicts prostate cancer progression,” says lead investigator Jian-Hua Luo, MD, PhD, associate professor in the Divisions of Molecular and Cellular Pathology, and Anatomic Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine. “Prediction models of prostate cancer relapse, or of the rate of PSA level increase after surgery, were generated from specific CNV patterns in tumor or benign prostate tissues adjacent to cancer samples.”

To detect the abnormalities, scientists conducted a comprehensive genome analysis on 238 samples obtained from men undergoing radical prostatectomy: 104 prostate tumor samples, 85 blood samples from patients with prostate cancer, and 49 samples of benign prostate tissues adjacent to a tumor. A third of the samples were from patients exhibiting recurrence with a PSA level increasing at a rapid rate, doubling in less than four months (rapid increases are associated with lethal prostate cancer); a third from patients exhibiting recurrence with a PSA level increasing at a slow rate, doubling time greater than 15 months; and a third with no relapse more than five years after surgery. Three commercially available prostate cancer cell lines were also tested to validate the results.

Deletions of large segments of specific chromosomes occurred with high frequency, whereas amplification of other chromosomes occurred in only a subset of prostate cancer samples. Similar amplification and deletion of the same regions also occurred in benign prostate tissue samples adjacent to the cancer. Prostate cancer patients' blood was found to contain significant CNVs. Most were not unique and overlapped with those of prostate cancer samples.

Using gene-specific CNV from tumor, the model correctly predicted 73% of cases for relapse and 75% of cases for short PSA doubling time. The CNV model from tissue adjacent to the prostate tumor correctly predicted 67% of cases for relapse and 77% of cases for short PSA doubling time. Using median-size CNV from blood, the genome model correctly predicted 81% of the cases for relapse and 69% of the cases for short PSA doubling time.

Dr. Luo notes that there are several potential clinical applications using CNV tests. “For a patient diagnosed with prostate cancer, CNV analysis done on blood or normal tissues would eliminate the need for additional invasive procedures to decide a treatment mode. For a patient already having a radical prostatectomy, CNV analysis on the tumor or blood sample may help to decide whether additional treatment is warranted to prevent relapse. Despite some limitations, including the need for high quality genome DNA, CNV analysis on the genome of blood, normal prostate, or tumor tissues holds promise to become a more efficient and accurate way to predict the behavior of prostate cancer.”

Media Contact

David Sampson EurekAlert!

More Information:

http://www.elsevier.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Making diamonds at ambient pressure

Scientists develop novel liquid metal alloy system to synthesize diamond under moderate conditions. Did you know that 99% of synthetic diamonds are currently produced using high-pressure and high-temperature (HPHT) methods?[2]…

Eruption of mega-magnetic star lights up nearby galaxy

Thanks to ESA satellites, an international team including UNIGE researchers has detected a giant eruption coming from a magnetar, an extremely magnetic neutron star. While ESA’s satellite INTEGRAL was observing…

Solving the riddle of the sphingolipids in coronary artery disease

Weill Cornell Medicine investigators have uncovered a way to unleash in blood vessels the protective effects of a type of fat-related molecule known as a sphingolipid, suggesting a promising new…

Partners & Sponsors