Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genes without templates

Many genes are completely new inventions and not just modified copies of old genes

It is easier to copy something than to develop something new - a principle that was long believed to also apply to the evolution of genes. According to this, evolution copies existing genes and then adapts the copies to new tasks.

However, scientists from the Max Planck Institute for Evolutionary Biology in Plön have now revealed that new genes often form from scratch. Their analyses of genes from mice, humans and fish have shown that new genes are shorter than old ones and simpler in structure. These and other differences between young and old genes indicate that completely new genes can also form from previously unread regions of the genome. Moreover, the new genes often use existing regulatory elements from other genes before they create their own.

When scientists decoded the first genes, they made a surprising discovery: similar variants of many genes are found even in very different organisms. This finding can be explained by the fact that evolution uses existing genes and adapts them to varying degrees for new tasks. The copying of genes plays an important role here. Copies are made of a gene and incorporated into the genome. Evolution can then experiment with these copies, while the original can continue to fulfil its function in its unaltered form. Completely new genes are very rare events in this model.

Rafik Neme and Diethard Tautz from the Max Planck Institute for Evolutionary Biology have now refuted this idea. Based on initial indications of the existence of completely new individual genes, they analysed over 20,000 mouse genes and traced their origins. According to their findings, genes that arose later in evolution are often shorter than those that have been in existence longer. Moreover, younger genes have fewer exons and fewer protein domains. This finding contradicts the accepted view: “If new genes are copies of old ones, a correlation of this kind between length and age would not be expected. However, a young gene needs time to acquire additional exons and introns. Thus, genes become longer with time and consist of numerous exons and introns,” explains Rafik Neme from the Max Planck Institute in Plön. Analyses of human, zebrafish and stickleback genes confirm the correlations discovered in the mouse.

The researchers also studied another way in which new genes can arise from existing genes: through a change in the reading frame. The genetic reading frame comprises three consecutive letters of the genetic alphabet. Each of these triplets stands for an amino acid which is translated from the genetic code. If this reading frame is shifted, new triplets arise and the genome is translated into completely different amino acids. “We found several cases, in which genes were overwritten due to such a change in the reading frame,” says Neme. An example of this is the Hoxa9 gene – a gene that controls embryonic development. In rodents and primates, this gene uses such an additional alternative reading frame.

According to the findings of the Plön-based researchers, around 60 percent of genes originate from our unicellular ancestors from the early phase of evolution. Large numbers of new genes were added in particular during the advent of fundamental evolutionary innovations: for example, the transition from unicellular to multicellular organisms and the emergence of vertebrates. A particularly high number of new genes also formed after the splitting of the mouse from other rodents. Interestingly, the scientists only found a few locations on the chromosomes in which newly formed genes accumulate. In fact, they are relatively evenly distributed across the entire genome. One of the few exceptions is a cluster of genes on chromosome 14 which control the activity of neurons, among other things.

New genes thus frequently arise from scratch in the course of evolution. They form in the gene-free sections of the genome, between the old genes. This often necessitates only minimal changes. “For example, genes need elements known as promoters which control their activity. It appears that new genes can appropriate promoters belonging to other genes and use them for their own purposes,” explains Diethard Tautz, Head of the Department of Evolutionary Genetics at the Max Planck Institute for Evolutionary Biology.


Prof. Dr. Diethard Tautz,
Max Planck Institute for Evolutionary Biology, Plön
Phone: +49 4522 763-390
Fax: +49 4522 763-281
Email: tautz@­
Rafik Neme,
Max Planck Institute for Evolutionary Biology, Plön
Phone: +49 4522 763-288
Email: rneme@­
r. Kerstin Mehnert,
Max Planck Institute for Evolutionary Biology, Plön
Phone: +49 4522 763-233
Fax: +49 4522 763-310
Email: mehnert@­
Original publication
Rafik Neme and Diethard Tautz
Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution

BMC Genomics 2013, 14:117 doi:10.1186/1471-2164-14-117

Prof. Dr. Diethard Tautz | Max-Planck-Institute
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>